Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592921388> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2592921388 abstract "This paper continues the study of the structure of finite intersections of general multiplicative translates $mathcal{C}(M_1,ldots,M_n)=frac{1}{M_1}Sigma_{3,bar{2}}capcdotscapfrac{1}{M_n}Sigma_{3,bar{2}}$ for integers $1leq M_1<cdots<M_n$, where $Sigma_{3,bar{2}}$ denotes the $3$-adic Cantor set. This study was motivated by questions concerning the discrete dynamical system on the $3$-adic integers $mathbb{Z}_3$ given by multiplication by $2$. The exceptional set $mathcal{E}(mathbb{Z}_3)$ is defined to be the set of all elements of $mathbb{Z}_3$ whose forward orbits under this action intersect the $3$-adic Cantor set $Sigma_{3,bar{2}}$ infinitely many times. It is conjectured that it has Hausdorff dimension $0$. Part I showed that upper bounds on the Hausdorff dimension of the exceptional set can be extracted from knowing Hausdorff dimensions of sets of the kind above, in cases where all $M_i$ are powers of $2$. These intersection sets were shown to be fractals whose points have $3$-adic expansions describable by labeled paths in a finite automaton, whose Hausdorff dimension is exactly computable and is of the form $log_3(beta)$ where $beta$ is a real algebraic integer. It gave algorithms for determination of the automaton, and computed examples showing that the dependence of the automaton and the value $beta$ on the parameters $(M_1,ldots,M_n)$ is complicated. The present paper studies two new infinite families of examples, illustrating interesting behavior of the automata and of the Hausdorff dimension of the associated fractals. One family has associated automata whose directed graph has a nested sequence of strongly connected components of arbitrarily large depth. The second family leads to an improved upper bound for the Hausdorff dimension of $mathcal{E}(mathbb{Z}_3)$ of $log_3 phi approx 0.438018$, where $phi$ denotes the Golden ratio." @default.
- W2592921388 created "2017-03-16" @default.
- W2592921388 creator A5005612207 @default.
- W2592921388 creator A5027135921 @default.
- W2592921388 creator A5083670480 @default.
- W2592921388 date "2015-08-24" @default.
- W2592921388 modified "2023-09-26" @default.
- W2592921388 title "Intersections of multiplicative translates of $3$-adic Cantor sets, Part II" @default.
- W2592921388 hasPublicationYear "2015" @default.
- W2592921388 type Work @default.
- W2592921388 sameAs 2592921388 @default.
- W2592921388 citedByCount "0" @default.
- W2592921388 crossrefType "posted-content" @default.
- W2592921388 hasAuthorship W2592921388A5005612207 @default.
- W2592921388 hasAuthorship W2592921388A5027135921 @default.
- W2592921388 hasAuthorship W2592921388A5083670480 @default.
- W2592921388 hasConcept C114614502 @default.
- W2592921388 hasConcept C115311070 @default.
- W2592921388 hasConcept C118615104 @default.
- W2592921388 hasConcept C121332964 @default.
- W2592921388 hasConcept C127413603 @default.
- W2592921388 hasConcept C134306372 @default.
- W2592921388 hasConcept C146978453 @default.
- W2592921388 hasConcept C194198291 @default.
- W2592921388 hasConcept C199360897 @default.
- W2592921388 hasConcept C2778049214 @default.
- W2592921388 hasConcept C33676613 @default.
- W2592921388 hasConcept C33923547 @default.
- W2592921388 hasConcept C36605576 @default.
- W2592921388 hasConcept C41008148 @default.
- W2592921388 hasConcept C42747912 @default.
- W2592921388 hasConcept C62520636 @default.
- W2592921388 hasConcept C64543145 @default.
- W2592921388 hasConcept C97137487 @default.
- W2592921388 hasConceptScore W2592921388C114614502 @default.
- W2592921388 hasConceptScore W2592921388C115311070 @default.
- W2592921388 hasConceptScore W2592921388C118615104 @default.
- W2592921388 hasConceptScore W2592921388C121332964 @default.
- W2592921388 hasConceptScore W2592921388C127413603 @default.
- W2592921388 hasConceptScore W2592921388C134306372 @default.
- W2592921388 hasConceptScore W2592921388C146978453 @default.
- W2592921388 hasConceptScore W2592921388C194198291 @default.
- W2592921388 hasConceptScore W2592921388C199360897 @default.
- W2592921388 hasConceptScore W2592921388C2778049214 @default.
- W2592921388 hasConceptScore W2592921388C33676613 @default.
- W2592921388 hasConceptScore W2592921388C33923547 @default.
- W2592921388 hasConceptScore W2592921388C36605576 @default.
- W2592921388 hasConceptScore W2592921388C41008148 @default.
- W2592921388 hasConceptScore W2592921388C42747912 @default.
- W2592921388 hasConceptScore W2592921388C62520636 @default.
- W2592921388 hasConceptScore W2592921388C64543145 @default.
- W2592921388 hasConceptScore W2592921388C97137487 @default.
- W2592921388 hasLocation W25929213881 @default.
- W2592921388 hasOpenAccess W2592921388 @default.
- W2592921388 hasPrimaryLocation W25929213881 @default.
- W2592921388 hasRelatedWork W1925720072 @default.
- W2592921388 hasRelatedWork W1961817304 @default.
- W2592921388 hasRelatedWork W1977445595 @default.
- W2592921388 hasRelatedWork W1978390864 @default.
- W2592921388 hasRelatedWork W2004489610 @default.
- W2592921388 hasRelatedWork W2021443016 @default.
- W2592921388 hasRelatedWork W2087747534 @default.
- W2592921388 hasRelatedWork W2100532477 @default.
- W2592921388 hasRelatedWork W2123005834 @default.
- W2592921388 hasRelatedWork W2128565143 @default.
- W2592921388 hasRelatedWork W2336060835 @default.
- W2592921388 hasRelatedWork W2741098198 @default.
- W2592921388 hasRelatedWork W2883225532 @default.
- W2592921388 hasRelatedWork W2950861017 @default.
- W2592921388 hasRelatedWork W2951327043 @default.
- W2592921388 hasRelatedWork W3003584204 @default.
- W2592921388 hasRelatedWork W3092506849 @default.
- W2592921388 hasRelatedWork W3099751044 @default.
- W2592921388 hasRelatedWork W3105631112 @default.
- W2592921388 hasRelatedWork W346278558 @default.
- W2592921388 isParatext "false" @default.
- W2592921388 isRetracted "false" @default.
- W2592921388 magId "2592921388" @default.
- W2592921388 workType "article" @default.