Matches in SemOpenAlex for { <https://semopenalex.org/work/W2592938596> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2592938596 abstract "Boolean games are a succinct representation of strategic games wherein a player seeks to satisfy a formula of propositional logic by selecting a truth assignment to a set of propositional variables under his control. The difficulty arises because a player does not necessarily control every variable on which his formula depends, hence the satisfaction of his formula will depend on the assignments chosen by other players, and his own choice of assignment will affect the satisfaction of other players' formulae. The framework has proven popular within the multiagent community and the literature is replete with papers either studying the properties of such games, or using them to model the interaction of self-interested agents. However, almost invariably, the work to date has been restricted to the case of pure strategies. Such a focus is highly restrictive as the notion of randomised play is fundamental to the theory of strategic games – even very simple games can fail to have pure-strategy equilibria, but every finite game has at least one equilibrium in mixed strategies. To address this, the present work focuses on the complexity of algorithmic problems dealing with mixed strategies in Boolean games. The main result is that the problem of determining whether a two-player game has an equilibrium satisfying a given payoff constraint is NEXP-complete. Based on this result, we then demonstrate that a number of other decision problems, such as the uniqueness of an equilibrium or the satisfaction of a given formula in equilibrium, are either NEXP or coNEXP-complete. The proof techniques developed in the course of this are then used to show that the problem of deciding whether a given profile is in equilibrium is coNP#P-hard, and the problem of deciding whether a Boolean game has a rational-valued equilibrium is NEXP-hard, and whether a two-player Boolean game has an irrationalvalued equilibrium is NEXP-complete. Finally, we show that determining whether the value of a two-player zero-sum game exceeds a given threshold is EXP-complete." @default.
- W2592938596 created "2017-03-16" @default.
- W2592938596 creator A5019209555 @default.
- W2592938596 date "2016-01-01" @default.
- W2592938596 modified "2023-09-27" @default.
- W2592938596 title "Complexity of mixed equilibria in boolean games" @default.
- W2592938596 cites W2012372307 @default.
- W2592938596 cites W2065939997 @default.
- W2592938596 cites W2115826669 @default.
- W2592938596 hasPublicationYear "2016" @default.
- W2592938596 type Work @default.
- W2592938596 sameAs 2592938596 @default.
- W2592938596 citedByCount "0" @default.
- W2592938596 crossrefType "journal-article" @default.
- W2592938596 hasAuthorship W2592938596A5019209555 @default.
- W2592938596 hasConcept C111472728 @default.
- W2592938596 hasConcept C134306372 @default.
- W2592938596 hasConcept C138885662 @default.
- W2592938596 hasConcept C144237770 @default.
- W2592938596 hasConcept C154945302 @default.
- W2592938596 hasConcept C170828538 @default.
- W2592938596 hasConcept C177142836 @default.
- W2592938596 hasConcept C177264268 @default.
- W2592938596 hasConcept C199360897 @default.
- W2592938596 hasConcept C22171661 @default.
- W2592938596 hasConcept C2777021972 @default.
- W2592938596 hasConcept C2780586882 @default.
- W2592938596 hasConcept C32407928 @default.
- W2592938596 hasConcept C33923547 @default.
- W2592938596 hasConcept C41008148 @default.
- W2592938596 hasConcept C47187476 @default.
- W2592938596 hasConcept C56694532 @default.
- W2592938596 hasConceptScore W2592938596C111472728 @default.
- W2592938596 hasConceptScore W2592938596C134306372 @default.
- W2592938596 hasConceptScore W2592938596C138885662 @default.
- W2592938596 hasConceptScore W2592938596C144237770 @default.
- W2592938596 hasConceptScore W2592938596C154945302 @default.
- W2592938596 hasConceptScore W2592938596C170828538 @default.
- W2592938596 hasConceptScore W2592938596C177142836 @default.
- W2592938596 hasConceptScore W2592938596C177264268 @default.
- W2592938596 hasConceptScore W2592938596C199360897 @default.
- W2592938596 hasConceptScore W2592938596C22171661 @default.
- W2592938596 hasConceptScore W2592938596C2777021972 @default.
- W2592938596 hasConceptScore W2592938596C2780586882 @default.
- W2592938596 hasConceptScore W2592938596C32407928 @default.
- W2592938596 hasConceptScore W2592938596C33923547 @default.
- W2592938596 hasConceptScore W2592938596C41008148 @default.
- W2592938596 hasConceptScore W2592938596C47187476 @default.
- W2592938596 hasConceptScore W2592938596C56694532 @default.
- W2592938596 hasLocation W25929385961 @default.
- W2592938596 hasOpenAccess W2592938596 @default.
- W2592938596 hasPrimaryLocation W25929385961 @default.
- W2592938596 hasRelatedWork W1526611557 @default.
- W2592938596 hasRelatedWork W1770177997 @default.
- W2592938596 hasRelatedWork W1792405193 @default.
- W2592938596 hasRelatedWork W1983796355 @default.
- W2592938596 hasRelatedWork W2015457728 @default.
- W2592938596 hasRelatedWork W2057905493 @default.
- W2592938596 hasRelatedWork W2090603514 @default.
- W2592938596 hasRelatedWork W2107761114 @default.
- W2592938596 hasRelatedWork W2126146397 @default.
- W2592938596 hasRelatedWork W2289844433 @default.
- W2592938596 hasRelatedWork W2508435788 @default.
- W2592938596 hasRelatedWork W2778034045 @default.
- W2592938596 hasRelatedWork W2787757889 @default.
- W2592938596 hasRelatedWork W2806425558 @default.
- W2592938596 hasRelatedWork W2891099160 @default.
- W2592938596 hasRelatedWork W2897115502 @default.
- W2592938596 hasRelatedWork W2914926577 @default.
- W2592938596 hasRelatedWork W2963037014 @default.
- W2592938596 hasRelatedWork W3166627015 @default.
- W2592938596 hasRelatedWork W884668373 @default.
- W2592938596 isParatext "false" @default.
- W2592938596 isRetracted "false" @default.
- W2592938596 magId "2592938596" @default.
- W2592938596 workType "article" @default.