Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593100467> ?p ?o ?g. }
- W2593100467 endingPage "009" @default.
- W2593100467 startingPage "009" @default.
- W2593100467 abstract "The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2–10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (∼ degree) and small (∼ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale. The configurations with large-aperture telescopes have a shallow optimum around 4–6 m in aperture diameter, assuming that large telescopes can achieve good performance for low-frequency noise. We explore some of the uncertainties of the instrumental model and cost parameters, and we find that the optimum has a weak dependence on these parameters. The hybrid configuration shows an even broader optimum, spanning a range of 4–10 m in aperture for the large telescopes. We also present two strawperson configurations as an outcome of this optimization study, and we discuss some ideas for improving our simple cost and instrumental models used here. There are several areas of this analysis that deserve further improvement. In our forecasting framework, we adopt a simple two-component foreground model with spatially varying power-law spectral indices. We estimate de-lensing performance statistically and ignore non-idealities such as anisotropic mode coverage, boundary effect, and possible foreground residual. Instrumental systematics, which is not accounted for in our analyses, may also influence the conceptual design. Further study of the instrumental and cost models will be one of the main areas of study by the entire CMB-S4 community. We hope that our framework will be useful for estimating the influence of these improvements in the future, and we will incorporate them in order to further improve the optimization." @default.
- W2593100467 created "2017-03-16" @default.
- W2593100467 creator A5034234794 @default.
- W2593100467 creator A5037667446 @default.
- W2593100467 creator A5039157368 @default.
- W2593100467 creator A5041152487 @default.
- W2593100467 creator A5044340050 @default.
- W2593100467 creator A5051444570 @default.
- W2593100467 creator A5056141212 @default.
- W2593100467 creator A5064344101 @default.
- W2593100467 creator A5077203720 @default.
- W2593100467 creator A5080896700 @default.
- W2593100467 creator A5081126606 @default.
- W2593100467 creator A5082065179 @default.
- W2593100467 date "2018-02-06" @default.
- W2593100467 modified "2023-10-18" @default.
- W2593100467 title "Optimization study for the experimental configuration of CMB-S4" @default.
- W2593100467 cites W1572836856 @default.
- W2593100467 cites W1608695725 @default.
- W2593100467 cites W1851018627 @default.
- W2593100467 cites W1851072260 @default.
- W2593100467 cites W1966550139 @default.
- W2593100467 cites W1968706092 @default.
- W2593100467 cites W1969348510 @default.
- W2593100467 cites W1973018404 @default.
- W2593100467 cites W1980655043 @default.
- W2593100467 cites W1982123390 @default.
- W2593100467 cites W1985527581 @default.
- W2593100467 cites W1987801517 @default.
- W2593100467 cites W1988078506 @default.
- W2593100467 cites W1990043790 @default.
- W2593100467 cites W2007048790 @default.
- W2593100467 cites W2009189331 @default.
- W2593100467 cites W2012728681 @default.
- W2593100467 cites W2016888141 @default.
- W2593100467 cites W2030864766 @default.
- W2593100467 cites W2033101727 @default.
- W2593100467 cites W2043528675 @default.
- W2593100467 cites W2044762843 @default.
- W2593100467 cites W2047584536 @default.
- W2593100467 cites W2051720450 @default.
- W2593100467 cites W2054899182 @default.
- W2593100467 cites W2056530650 @default.
- W2593100467 cites W2058269106 @default.
- W2593100467 cites W2066007803 @default.
- W2593100467 cites W2072646999 @default.
- W2593100467 cites W2080615327 @default.
- W2593100467 cites W2081092526 @default.
- W2593100467 cites W2086055384 @default.
- W2593100467 cites W2094831059 @default.
- W2593100467 cites W2095976636 @default.
- W2593100467 cites W2097860898 @default.
- W2593100467 cites W2105143957 @default.
- W2593100467 cites W2117531093 @default.
- W2593100467 cites W2118117006 @default.
- W2593100467 cites W2118661612 @default.
- W2593100467 cites W2125661920 @default.
- W2593100467 cites W2134251287 @default.
- W2593100467 cites W2139379699 @default.
- W2593100467 cites W2143174951 @default.
- W2593100467 cites W2157114181 @default.
- W2593100467 cites W2164261152 @default.
- W2593100467 cites W2214700256 @default.
- W2593100467 cites W2274616829 @default.
- W2593100467 cites W2308996868 @default.
- W2593100467 cites W2329641049 @default.
- W2593100467 cites W2471843421 @default.
- W2593100467 cites W2493912929 @default.
- W2593100467 cites W2502131505 @default.
- W2593100467 cites W2520208773 @default.
- W2593100467 cites W2601144957 @default.
- W2593100467 cites W2614871760 @default.
- W2593100467 cites W2952607039 @default.
- W2593100467 cites W2964024797 @default.
- W2593100467 cites W2995922150 @default.
- W2593100467 cites W3098216333 @default.
- W2593100467 cites W3099467057 @default.
- W2593100467 cites W3099807229 @default.
- W2593100467 cites W3101514127 @default.
- W2593100467 cites W3102086509 @default.
- W2593100467 cites W3102368526 @default.
- W2593100467 cites W3102392776 @default.
- W2593100467 cites W3103154519 @default.
- W2593100467 cites W3104388551 @default.
- W2593100467 cites W3104721568 @default.
- W2593100467 cites W3105046323 @default.
- W2593100467 cites W3105395810 @default.
- W2593100467 cites W3122798095 @default.
- W2593100467 cites W4229975217 @default.
- W2593100467 cites W4289259058 @default.
- W2593100467 cites W4292322877 @default.
- W2593100467 cites W4292407340 @default.
- W2593100467 cites W4297676541 @default.
- W2593100467 cites W4300127344 @default.
- W2593100467 cites W4376849656 @default.
- W2593100467 cites W2524295585 @default.
- W2593100467 doi "https://doi.org/10.1088/1475-7516/2018/02/009" @default.
- W2593100467 hasPublicationYear "2018" @default.