Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593157645> ?p ?o ?g. }
- W2593157645 abstract "The advancement of data acquisition and analysis technology has resulted in many real-world data being dynamic and containing rich content and structured information. More specifically, with the fast development of information technology, many current real-world data are always featured with dynamic changes, such as new instances, new nodes and edges, and modifications to the node content. Different from traditional data, which are represented as feature vectors, data with complex relationships are often represented as graphs to denote the content of the data entries and their structural relationships, where instances (nodes) are not only characterized by the content but are also subject to dependency relationships. Plus, real-time availability is one of outstanding features of today’s data. Real-time analytics is dynamic analysis and reporting based on data entered into a system before the actual time of use. Real-time analytics emphasizes on deriving immediate knowledge from dynamic data sources, such as data streams, and knowledge discovery and pattern mining are facing complex, dynamic data sources. However, how to combine structure information and node content information for accurate and real-time data mining is still a big challenge. Accordingly, this thesis focuses on real-time analytics for complex structure data. We explore instance correlation in complex structure data and utilises it to make mining tasks more accurate and applicable. To be specific, our objective is to combine node correlation with node content and utilize them for three different tasks, including (1) graph stream classification, (2) super-graph classification and clustering, and (3) streaming network node classification.Understanding the role of structured patterns for graph classification: the thesis introduces existing works on data mining from an complex structured perspective. Then we propose a graph factorization-based fine-grained representation model, where the main objective is to use linear combinations of a set of discriminative cliques to represent graphs for learning. The optimization-oriented factorization approach ensures minimum information loss for graph representation, and also avoids the expensive sub-graph isomorphism validation process. Based on this idea, we propose a novel framework for fast graph stream classification.A new structure data classification algorithm: The second method introduces a new super-graph classification and clustering problem. Due to the inherent complex structure representation, all existing graph classification methods cannot be applied to super-graph classification. In the thesis, we propose a weighted random walk kernel which calculates the similarity between two super-graphs by assessing (a) the similarity between super-nodes of the super-graphs, and (b) the common walks of the super-graphs. Our key contribution is: (1) a new super-node and super-graph structure to enrich existing graph representation for real-world applications; (2) a weighted random walk kernel considering node and…" @default.
- W2593157645 created "2017-03-16" @default.
- W2593157645 creator A5082065117 @default.
- W2593157645 date "2015-01-01" @default.
- W2593157645 modified "2023-09-27" @default.
- W2593157645 title "Real-time analytics for complex structure data" @default.
- W2593157645 cites W111739550 @default.
- W2593157645 cites W12820539 @default.
- W2593157645 cites W1510477870 @default.
- W2593157645 cites W1546962148 @default.
- W2593157645 cites W1556847758 @default.
- W2593157645 cites W1604591429 @default.
- W2593157645 cites W1631295847 @default.
- W2593157645 cites W1816257748 @default.
- W2593157645 cites W1826290430 @default.
- W2593157645 cites W1985850469 @default.
- W2593157645 cites W1986678144 @default.
- W2593157645 cites W1989037929 @default.
- W2593157645 cites W1993591232 @default.
- W2593157645 cites W1998259813 @default.
- W2593157645 cites W2000892449 @default.
- W2593157645 cites W2009727399 @default.
- W2593157645 cites W2016210016 @default.
- W2593157645 cites W2039444222 @default.
- W2593157645 cites W2045248798 @default.
- W2593157645 cites W2068714596 @default.
- W2593157645 cites W2092292680 @default.
- W2593157645 cites W2092750499 @default.
- W2593157645 cites W2095293504 @default.
- W2593157645 cites W2096725584 @default.
- W2593157645 cites W2099438806 @default.
- W2593157645 cites W2102039273 @default.
- W2593157645 cites W2102913801 @default.
- W2593157645 cites W2105869081 @default.
- W2593157645 cites W2107410045 @default.
- W2593157645 cites W2108728387 @default.
- W2593157645 cites W2110034858 @default.
- W2593157645 cites W2110920461 @default.
- W2593157645 cites W2111315907 @default.
- W2593157645 cites W2113014179 @default.
- W2593157645 cites W2118349699 @default.
- W2593157645 cites W2121947440 @default.
- W2593157645 cites W2123838014 @default.
- W2593157645 cites W2134008243 @default.
- W2593157645 cites W2137609262 @default.
- W2593157645 cites W2141081215 @default.
- W2593157645 cites W2149706766 @default.
- W2593157645 cites W2153301229 @default.
- W2593157645 cites W2153338628 @default.
- W2593157645 cites W2153635508 @default.
- W2593157645 cites W2158359807 @default.
- W2593157645 cites W2165515835 @default.
- W2593157645 cites W2168689650 @default.
- W2593157645 cites W2412652280 @default.
- W2593157645 cites W3119651796 @default.
- W2593157645 cites W631140850 @default.
- W2593157645 hasPublicationYear "2015" @default.
- W2593157645 type Work @default.
- W2593157645 sameAs 2593157645 @default.
- W2593157645 citedByCount "0" @default.
- W2593157645 crossrefType "dissertation" @default.
- W2593157645 hasAuthorship W2593157645A5082065117 @default.
- W2593157645 hasConcept C119857082 @default.
- W2593157645 hasConcept C124101348 @default.
- W2593157645 hasConcept C127413603 @default.
- W2593157645 hasConcept C132525143 @default.
- W2593157645 hasConcept C136764020 @default.
- W2593157645 hasConcept C154945302 @default.
- W2593157645 hasConcept C175801342 @default.
- W2593157645 hasConcept C197298091 @default.
- W2593157645 hasConcept C19768560 @default.
- W2593157645 hasConcept C2522767166 @default.
- W2593157645 hasConcept C34947359 @default.
- W2593157645 hasConcept C41008148 @default.
- W2593157645 hasConcept C62611344 @default.
- W2593157645 hasConcept C66938386 @default.
- W2593157645 hasConcept C73555534 @default.
- W2593157645 hasConcept C75684735 @default.
- W2593157645 hasConcept C77088390 @default.
- W2593157645 hasConcept C79158427 @default.
- W2593157645 hasConcept C80444323 @default.
- W2593157645 hasConcept C89198739 @default.
- W2593157645 hasConceptScore W2593157645C119857082 @default.
- W2593157645 hasConceptScore W2593157645C124101348 @default.
- W2593157645 hasConceptScore W2593157645C127413603 @default.
- W2593157645 hasConceptScore W2593157645C132525143 @default.
- W2593157645 hasConceptScore W2593157645C136764020 @default.
- W2593157645 hasConceptScore W2593157645C154945302 @default.
- W2593157645 hasConceptScore W2593157645C175801342 @default.
- W2593157645 hasConceptScore W2593157645C197298091 @default.
- W2593157645 hasConceptScore W2593157645C19768560 @default.
- W2593157645 hasConceptScore W2593157645C2522767166 @default.
- W2593157645 hasConceptScore W2593157645C34947359 @default.
- W2593157645 hasConceptScore W2593157645C41008148 @default.
- W2593157645 hasConceptScore W2593157645C62611344 @default.
- W2593157645 hasConceptScore W2593157645C66938386 @default.
- W2593157645 hasConceptScore W2593157645C73555534 @default.
- W2593157645 hasConceptScore W2593157645C75684735 @default.
- W2593157645 hasConceptScore W2593157645C77088390 @default.
- W2593157645 hasConceptScore W2593157645C79158427 @default.