Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593177721> ?p ?o ?g. }
- W2593177721 abstract "Abstract Learning-based face hallucination methods have received much attention and progress in past few decades. Specially, position-patch based approaches have been proposed to replace the probabilistic graph-based or manifold learning-based ones. As opposed to the existing patch based methods, where the input image patch matrix is converted into vectors before combination coefficients calculation, in this paper, we propose to directly use the image matrix based regression model for combination coefficients computation to preserve the essential structural information of the input patch matrix. For each input low-resolution (LR) patch matrix, its combination coefficients over the training image patch matrices at the same position can be computed. Then the corresponding high-resolution (HR) patch matrix can be obtained with the LR training patches replaced by the corresponding HR ones. The nonlocal self-similarities are finally utilized to further improve the hallucination performance. Various experimental results on standard face databases indicate that our proposed method outperforms some state-of-the-art algorithms in terms of both visual quantity and objective metrics." @default.
- W2593177721 created "2017-03-16" @default.
- W2593177721 creator A5009585171 @default.
- W2593177721 creator A5038362365 @default.
- W2593177721 creator A5061102708 @default.
- W2593177721 creator A5062318228 @default.
- W2593177721 creator A5068933094 @default.
- W2593177721 creator A5071278984 @default.
- W2593177721 creator A5082756048 @default.
- W2593177721 date "2017-05-01" @default.
- W2593177721 modified "2023-10-15" @default.
- W2593177721 title "Nuclear norm regularized coding with local position-patch and nonlocal similarity for face hallucination" @default.
- W2593177721 cites W1065020085 @default.
- W2593177721 cites W1602749098 @default.
- W2593177721 cites W1885185971 @default.
- W2593177721 cites W1904056154 @default.
- W2593177721 cites W1970803651 @default.
- W2593177721 cites W1972002222 @default.
- W2593177721 cites W1976503215 @default.
- W2593177721 cites W1987017523 @default.
- W2593177721 cites W1989267105 @default.
- W2593177721 cites W1992738091 @default.
- W2593177721 cites W1996040242 @default.
- W2593177721 cites W1999457380 @default.
- W2593177721 cites W2010723053 @default.
- W2593177721 cites W2015497428 @default.
- W2593177721 cites W2021416144 @default.
- W2593177721 cites W2027325144 @default.
- W2593177721 cites W2029934013 @default.
- W2593177721 cites W2031349574 @default.
- W2593177721 cites W2032748597 @default.
- W2593177721 cites W2033150480 @default.
- W2593177721 cites W2036267566 @default.
- W2593177721 cites W2039266672 @default.
- W2593177721 cites W2041844466 @default.
- W2593177721 cites W2042230250 @default.
- W2593177721 cites W2043360443 @default.
- W2593177721 cites W2043661478 @default.
- W2593177721 cites W2048299340 @default.
- W2593177721 cites W2050834445 @default.
- W2593177721 cites W2050874697 @default.
- W2593177721 cites W2052950171 @default.
- W2593177721 cites W2053186076 @default.
- W2593177721 cites W2061879449 @default.
- W2593177721 cites W2062716212 @default.
- W2593177721 cites W2064514722 @default.
- W2593177721 cites W2067042811 @default.
- W2593177721 cites W2069165391 @default.
- W2593177721 cites W2070038402 @default.
- W2593177721 cites W2077646121 @default.
- W2593177721 cites W2078301312 @default.
- W2593177721 cites W2079598971 @default.
- W2593177721 cites W2084796520 @default.
- W2593177721 cites W2096027770 @default.
- W2593177721 cites W2103972604 @default.
- W2593177721 cites W2118963448 @default.
- W2593177721 cites W2121058967 @default.
- W2593177721 cites W2133665775 @default.
- W2593177721 cites W2138451337 @default.
- W2593177721 cites W2140959843 @default.
- W2593177721 cites W2141631520 @default.
- W2593177721 cites W2149760002 @default.
- W2593177721 cites W2158054868 @default.
- W2593177721 cites W2160021903 @default.
- W2593177721 cites W2169542172 @default.
- W2593177721 cites W2171107009 @default.
- W2593177721 cites W2172194783 @default.
- W2593177721 cites W2261658981 @default.
- W2593177721 cites W2288560581 @default.
- W2593177721 cites W2293162296 @default.
- W2593177721 cites W2295477204 @default.
- W2593177721 cites W2297991835 @default.
- W2593177721 cites W2336484677 @default.
- W2593177721 cites W2461349148 @default.
- W2593177721 cites W2469486851 @default.
- W2593177721 cites W2518058967 @default.
- W2593177721 cites W2950158785 @default.
- W2593177721 cites W54257720 @default.
- W2593177721 cites W909808580 @default.
- W2593177721 cites W2140257560 @default.
- W2593177721 doi "https://doi.org/10.1016/j.dsp.2017.02.009" @default.
- W2593177721 hasPublicationYear "2017" @default.
- W2593177721 type Work @default.
- W2593177721 sameAs 2593177721 @default.
- W2593177721 citedByCount "3" @default.
- W2593177721 countsByYear W25931777212018 @default.
- W2593177721 crossrefType "journal-article" @default.
- W2593177721 hasAuthorship W2593177721A5009585171 @default.
- W2593177721 hasAuthorship W2593177721A5038362365 @default.
- W2593177721 hasAuthorship W2593177721A5061102708 @default.
- W2593177721 hasAuthorship W2593177721A5062318228 @default.
- W2593177721 hasAuthorship W2593177721A5068933094 @default.
- W2593177721 hasAuthorship W2593177721A5071278984 @default.
- W2593177721 hasAuthorship W2593177721A5082756048 @default.
- W2593177721 hasConcept C10138342 @default.
- W2593177721 hasConcept C103278499 @default.
- W2593177721 hasConcept C106487976 @default.
- W2593177721 hasConcept C11413529 @default.
- W2593177721 hasConcept C115961682 @default.
- W2593177721 hasConcept C121332964 @default.