Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593222352> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2593222352 abstract "Purpose: Compressed sensing MRI (CS-MRI) from single and parallel coils is one of the powerful ways to reduce the scan time of MR imaging with performance guarantee. However, the computational costs are usually expensive. This paper aims to propose a computationally fast and accurate deep learning algorithm for the reconstruction of MR images from highly down-sampled k-space data. Theory: Based on the topological analysis, we show that the data manifold of the aliasing artifact is easier to learn from a uniform subsampling pattern with additional low-frequency k-space data. Thus, we develop deep aliasing artifact learning networks for the magnitude and phase images to estimate and remove the aliasing artifacts from highly accelerated MR acquisition. Methods: The aliasing artifacts are directly estimated from the distorted magnitude and phase images reconstructed from subsampled k-space data so that we can get an aliasing-free images by subtracting the estimated aliasing artifact from corrupted inputs. Moreover, to deal with the globally distributed aliasing artifact, we develop a multi-scale deep neural network with a large receptive field. Results: The experimental results confirm that the proposed deep artifact learning network effectively estimates and removes the aliasing artifacts. Compared to existing CS methods from single and multi-coli data, the proposed network shows minimal errors by removing the coherent aliasing artifacts. Furthermore, the computational time is by order of magnitude faster. Conclusion: As the proposed deep artifact learning network immediately generates accurate reconstruction, it has great potential for clinical applications." @default.
- W2593222352 created "2017-03-16" @default.
- W2593222352 creator A5012644755 @default.
- W2593222352 creator A5029182095 @default.
- W2593222352 creator A5065413424 @default.
- W2593222352 date "2017-03-03" @default.
- W2593222352 modified "2023-10-18" @default.
- W2593222352 title "Deep artifact learning for compressed sensing and parallel MRI." @default.
- W2593222352 cites W1533861849 @default.
- W2593222352 cites W1901129140 @default.
- W2593222352 cites W1906770428 @default.
- W2593222352 cites W2029816571 @default.
- W2593222352 cites W2089947415 @default.
- W2593222352 cites W2111388536 @default.
- W2593222352 cites W2148603752 @default.
- W2593222352 cites W2194775991 @default.
- W2593222352 cites W2281746805 @default.
- W2593222352 cites W2296616510 @default.
- W2593222352 cites W2330127310 @default.
- W2593222352 cites W2442117232 @default.
- W2593222352 cites W2556016755 @default.
- W2593222352 cites W2579923771 @default.
- W2593222352 cites W2799691347 @default.
- W2593222352 cites W2949117887 @default.
- W2593222352 cites W2952637581 @default.
- W2593222352 cites W2962903101 @default.
- W2593222352 cites W54257720 @default.
- W2593222352 hasPublicationYear "2017" @default.
- W2593222352 type Work @default.
- W2593222352 sameAs 2593222352 @default.
- W2593222352 citedByCount "4" @default.
- W2593222352 countsByYear W25932223522017 @default.
- W2593222352 countsByYear W25932223522018 @default.
- W2593222352 countsByYear W25932223522020 @default.
- W2593222352 crossrefType "posted-content" @default.
- W2593222352 hasAuthorship W2593222352A5012644755 @default.
- W2593222352 hasAuthorship W2593222352A5029182095 @default.
- W2593222352 hasAuthorship W2593222352A5065413424 @default.
- W2593222352 hasConcept C108583219 @default.
- W2593222352 hasConcept C11413529 @default.
- W2593222352 hasConcept C127220857 @default.
- W2593222352 hasConcept C136536468 @default.
- W2593222352 hasConcept C13895895 @default.
- W2593222352 hasConcept C153180895 @default.
- W2593222352 hasConcept C154945302 @default.
- W2593222352 hasConcept C2779010991 @default.
- W2593222352 hasConcept C28490314 @default.
- W2593222352 hasConcept C31972630 @default.
- W2593222352 hasConcept C4069607 @default.
- W2593222352 hasConcept C41008148 @default.
- W2593222352 hasConcept C534633266 @default.
- W2593222352 hasConcept C64922751 @default.
- W2593222352 hasConceptScore W2593222352C108583219 @default.
- W2593222352 hasConceptScore W2593222352C11413529 @default.
- W2593222352 hasConceptScore W2593222352C127220857 @default.
- W2593222352 hasConceptScore W2593222352C136536468 @default.
- W2593222352 hasConceptScore W2593222352C13895895 @default.
- W2593222352 hasConceptScore W2593222352C153180895 @default.
- W2593222352 hasConceptScore W2593222352C154945302 @default.
- W2593222352 hasConceptScore W2593222352C2779010991 @default.
- W2593222352 hasConceptScore W2593222352C28490314 @default.
- W2593222352 hasConceptScore W2593222352C31972630 @default.
- W2593222352 hasConceptScore W2593222352C4069607 @default.
- W2593222352 hasConceptScore W2593222352C41008148 @default.
- W2593222352 hasConceptScore W2593222352C534633266 @default.
- W2593222352 hasConceptScore W2593222352C64922751 @default.
- W2593222352 hasLocation W25932223521 @default.
- W2593222352 hasOpenAccess W2593222352 @default.
- W2593222352 hasPrimaryLocation W25932223521 @default.
- W2593222352 hasRelatedWork W1901129140 @default.
- W2593222352 hasRelatedWork W2101675075 @default.
- W2593222352 hasRelatedWork W2111388536 @default.
- W2593222352 hasRelatedWork W2117882039 @default.
- W2593222352 hasRelatedWork W2133665775 @default.
- W2593222352 hasRelatedWork W2168668658 @default.
- W2593222352 hasRelatedWork W2194775991 @default.
- W2593222352 hasRelatedWork W2296616510 @default.
- W2593222352 hasRelatedWork W2337983040 @default.
- W2593222352 hasRelatedWork W2442117232 @default.
- W2593222352 hasRelatedWork W2552808051 @default.
- W2593222352 hasRelatedWork W2594014149 @default.
- W2593222352 hasRelatedWork W2604388535 @default.
- W2593222352 hasRelatedWork W2611467245 @default.
- W2593222352 hasRelatedWork W2631883531 @default.
- W2593222352 hasRelatedWork W2964121744 @default.
- W2593222352 hasRelatedWork W2998976658 @default.
- W2593222352 hasRelatedWork W3105799380 @default.
- W2593222352 hasRelatedWork W2167233877 @default.
- W2593222352 hasRelatedWork W2168887049 @default.
- W2593222352 isParatext "false" @default.
- W2593222352 isRetracted "false" @default.
- W2593222352 magId "2593222352" @default.
- W2593222352 workType "article" @default.