Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593255647> ?p ?o ?g. }
- W2593255647 endingPage "410" @default.
- W2593255647 startingPage "410" @default.
- W2593255647 abstract "Abstract Abstract 410 FDA-approved drugs with previously unrecognized anti-cancer activity could be rapidly repurposed for this new indication. To identify such compounds, we compiled a library of known drugs with high maximal tolerated doses and well-known toxicity profiles. We screened this library in a dose-response manner in 4 leukemia cell lines to identify cytotoxic compounds as measured by the MTS assay. From these screens, we identified the anti-parasitic agent ivermectin (IVM) that induced cell death at low micromolar concentrations in all four leukemia lines tested. IVM is a derivative of avermecin B1 and licensed for the treatment of strongyloidiasis and onchocerciasis parasitic infections, but also effective against other worm infestations (e.g., ascariasis, trichuriasis and enterobiasis). To evaluate the effects of IVM as a potential anti-cancer agent, leukemia and myeloma (n = 9) cell lines were treated with increasing concentrations of IVM. 72 hours after incubation, cell viability was determined by the MTS assay. IVM decreased the viability of 3/5 leukemia cell lines with an LD50 < 5uM and all other tested malignant cell lines with an LD50 < 10uM. Cell death was confirmed by Trypan blue staining and Annexin V staining. In clonogenic growth assays, 6uM IVM reduced clonogenic growth by ≥ 40% in 3/6 primary AML samples, but <15% in 3/3 samples of normal hematopoietic mononuclear cells. Given the effects of IVM in cell lines, we evaluated the drug in mouse models of leukemia. Here, K562, OCI-AML2, and MDAY-D2 leukemia cells were implanted subcutaneously into the flanks of sublethally irradiated NOD/SCID mice. One week after implantation, when the tumors were palpable, mice were treated with IVM at 3mg/kg/day by oral gavage or buffer control. Compared to control, IVM decreased tumor volume and weight in all 3 xenograft models by up to 72% without observable toxicity. Of note, a dose of 3mg/kg in mice translates to a dose of 0.24 mg/kg in humans based on scaling of body weight and surface area. This dose is readily achievable in human as patients routinely receive 0.2mg/kg for the treatment of parasitic disease and overdoses of up to 6g were not toxic. As an anti-parasitic, IVM binds and activates chloride ion channels, so we tested the effects of IVM on chloride flux in leukemia cells. OCI AML2 cells were treated with increasing concentrations of IVM and changes in intracellular chloride were measured using the fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium and flow cytometry. IVM increased intracellular chloride ion concentrations within 30 minutes of treatment. Chloride influx was accompanied by plasma membrane hyperpolarization within 1 hr of treatment, but no change in mitochondrial membrane potential was noted up to 24 hours after treatment. Plasma membrane hyperpolarization was dependent on chloride influx, as treatment with IVM in chloride-free media did not induce membrane hyperpolarization. Alternations in intracellular chloride and membrane hyperpolarization can lead to increased reactive oxygen species (ROS) generation. Therefore, we measured changes in ROS after treatment with IVM. IVM (6uM) increased ROS generation in OCI-AML2 cells up to 2 ± 0.2 fold within 4 hours of treatment. Increased ROS generation appeared functionally important for IVM-induced cell death as pre-treatment with the antioxidant N-acetyl-L-cysteine (NAC) inhibited IVM-induced cell death. Further supporting a mechanism of cell death related to increased ROS, IVM treatment increased expression of STAT1, IFIT3, OAS1, and TRIM22, members of the STAT1 signaling pathway that are known to be upregulated upon ROS generation. Cytarabine and daunorubicin are used in the treatment of AML and increase ROS production through mechanisms related to DNA damage. Therefore, we evaluated the combination of IVM and cytarabine and daunorubicin. By isobologram analysis, IVM synergized with cyatarabine (CI=0.51, 0.58, 0.65 at ED25, ED50, ED75, respectively) and daunorubicin (CI=0.48, 0.51, 0.54 at ED25, ED50, ED75, respectively). Thus, in summary, IVM activates chloride channels in leukemia cells leading to membrane hyperpolarization and increased ROS generation. In addition, it demonstrated preclinical activity in this disease at pharmacologically achievable concentrations. Therefore, IVM could be rapidly repurposed for the treatment of leukemia and highlights a potential new therapeutic strategy for this disease. Disclosures: Off Label Use: Ivermectin is an antiparasitic agent, licensed for the treatment of strongyloidiasis and onchocerciasis parasitic infections, but also effective against other worm infestations (e.g., ascariasis, trichuriasis and enterobiasis)." @default.
- W2593255647 created "2017-03-16" @default.
- W2593255647 creator A5018005429 @default.
- W2593255647 creator A5023006306 @default.
- W2593255647 creator A5023493382 @default.
- W2593255647 creator A5028072253 @default.
- W2593255647 creator A5032735385 @default.
- W2593255647 creator A5037332893 @default.
- W2593255647 creator A5038187231 @default.
- W2593255647 creator A5039379710 @default.
- W2593255647 creator A5041972565 @default.
- W2593255647 creator A5045250493 @default.
- W2593255647 creator A5056626774 @default.
- W2593255647 creator A5056916124 @default.
- W2593255647 creator A5069066501 @default.
- W2593255647 creator A5084315463 @default.
- W2593255647 date "2009-11-20" @default.
- W2593255647 modified "2023-10-07" @default.
- W2593255647 title "Activation of Chloride Channels with the Anti-Parasitic Agent Ivermectin Induces Membrane Hyperpolarization and Cell Death in Leukemia Cells." @default.
- W2593255647 cites W1492445977 @default.
- W2593255647 cites W1534965621 @default.
- W2593255647 cites W1600695244 @default.
- W2593255647 cites W1660925261 @default.
- W2593255647 cites W1709114039 @default.
- W2593255647 cites W1827262351 @default.
- W2593255647 cites W1844546068 @default.
- W2593255647 cites W1949157693 @default.
- W2593255647 cites W1963335440 @default.
- W2593255647 cites W1963819255 @default.
- W2593255647 cites W1966294794 @default.
- W2593255647 cites W1967965234 @default.
- W2593255647 cites W1973728643 @default.
- W2593255647 cites W1975188549 @default.
- W2593255647 cites W1978926685 @default.
- W2593255647 cites W1980400808 @default.
- W2593255647 cites W1983299872 @default.
- W2593255647 cites W1995278988 @default.
- W2593255647 cites W2000021697 @default.
- W2593255647 cites W2004477791 @default.
- W2593255647 cites W2009970944 @default.
- W2593255647 cites W2012188043 @default.
- W2593255647 cites W2015717266 @default.
- W2593255647 cites W2023751546 @default.
- W2593255647 cites W2028173749 @default.
- W2593255647 cites W2033489247 @default.
- W2593255647 cites W2036511719 @default.
- W2593255647 cites W2036821542 @default.
- W2593255647 cites W2036822252 @default.
- W2593255647 cites W2036980247 @default.
- W2593255647 cites W2038492783 @default.
- W2593255647 cites W2040174501 @default.
- W2593255647 cites W2042683429 @default.
- W2593255647 cites W2057264061 @default.
- W2593255647 cites W2062608680 @default.
- W2593255647 cites W2063943960 @default.
- W2593255647 cites W2067150248 @default.
- W2593255647 cites W2068356917 @default.
- W2593255647 cites W2073057404 @default.
- W2593255647 cites W2075035979 @default.
- W2593255647 cites W2077945404 @default.
- W2593255647 cites W2086554707 @default.
- W2593255647 cites W2094563618 @default.
- W2593255647 cites W2095616902 @default.
- W2593255647 cites W2097293117 @default.
- W2593255647 cites W2097383206 @default.
- W2593255647 cites W2104930292 @default.
- W2593255647 cites W2112519486 @default.
- W2593255647 cites W2115375806 @default.
- W2593255647 cites W2116311897 @default.
- W2593255647 cites W2122202792 @default.
- W2593255647 cites W2127034714 @default.
- W2593255647 cites W2127269142 @default.
- W2593255647 cites W2139961063 @default.
- W2593255647 cites W2146729060 @default.
- W2593255647 cites W2152637109 @default.
- W2593255647 cites W2155479633 @default.
- W2593255647 cites W2159738043 @default.
- W2593255647 cites W2161422385 @default.
- W2593255647 cites W2163018106 @default.
- W2593255647 cites W2165769610 @default.
- W2593255647 cites W229051577 @default.
- W2593255647 cites W2326585954 @default.
- W2593255647 cites W2338296282 @default.
- W2593255647 cites W2342285953 @default.
- W2593255647 cites W24057889 @default.
- W2593255647 cites W2418444091 @default.
- W2593255647 cites W2472957512 @default.
- W2593255647 cites W49953563 @default.
- W2593255647 doi "https://doi.org/10.1182/blood.v114.22.410.410" @default.
- W2593255647 hasPublicationYear "2009" @default.
- W2593255647 type Work @default.
- W2593255647 sameAs 2593255647 @default.
- W2593255647 citedByCount "2" @default.
- W2593255647 crossrefType "journal-article" @default.
- W2593255647 hasAuthorship W2593255647A5018005429 @default.
- W2593255647 hasAuthorship W2593255647A5023006306 @default.
- W2593255647 hasAuthorship W2593255647A5023493382 @default.
- W2593255647 hasAuthorship W2593255647A5028072253 @default.