Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593314755> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2593314755 endingPage "106" @default.
- W2593314755 startingPage "94" @default.
- W2593314755 abstract "Average solution quality of one filter and four wrapper approaches on 8 medical datasetsDisplay Omitted A binary version of the Black Hole Algorithm (BBHA) for solving discrete problems is proposed.Proposed algorithm was compared to 6 well known decision tree classifiers.Experimental results demonstrate that Random Forest is the best decision tree algorithmThe proposed BBHA wrapper based feature selection approach outperforms the performances of other algorithms.The proposed method also performed much faster, needs single parameter for configuring the model, and is simple to understand. Biological data often consist of redundant and irrelevant features. These features can lead to misleading in modeling the algorithms and overfitting problem. Without a feature selection method, it is difficult for the existing models to accurately capture the patterns on data. The aim of feature selection is to choose a small number of relevant or significant features to enhance the performance of the classification. Existing feature selection methods suffer from the problems such as becoming stuck in local optima and being computationally expensive. To solve these problems, an efficient global search technique is needed.Black Hole Algorithm (BHA) is an efficient and new global search technique, inspired by the behavior of black hole, which is being applied to solve several optimization problems. However, the potential of BHA for feature selection has not been investigated yet. This paper proposes a Binary version of Black Hole Algorithm called BBHA for solving feature selection problem in biological data. The BBHA is an extension of existing BHA through appropriate binarization. Moreover, the performances of six well-known decision tree classifiers (Random Forest (RF), Bagging, C5.0, C4.5, Boosted C5.0, and CART) are compared in this study to employ the best one as an evaluator of proposed algorithm.The performance of the proposed algorithm is tested upon eight publicly available biological datasets and is compared with Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), and Correlation based Feature Selection (CFS) in terms of accuracy, sensitivity, specificity, Matthews Correlation Coefficient (MCC), and Area Under the receiver operating characteristic (ROC) Curve (AUC). In order to verify the applicability and generality of the BBHA, it was integrated with Naive Bayes (NB) classifier and applied on further datasets on the text and image domains.The experimental results confirm that the performance of RF is better than the other decision tree algorithms and the proposed BBHA wrapper based feature selection method is superior to BPSO, GA, SA, and CFS in terms of all criteria. BBHA gives significantly better performance than the BPSO and GA in terms of CPU Time, the number of parameters for configuring the model, and the number of chosen optimized features. Also, BBHA has competitive or better performance than the other methods in the literature." @default.
- W2593314755 created "2017-03-16" @default.
- W2593314755 creator A5015969726 @default.
- W2593314755 creator A5022101226 @default.
- W2593314755 date "2017-07-01" @default.
- W2593314755 modified "2023-09-27" @default.
- W2593314755 title "Binary black hole algorithm for feature selection and classification on biological data" @default.
- W2593314755 cites W1520812622 @default.
- W2593314755 cites W1911726212 @default.
- W2593314755 cites W1968661104 @default.
- W2593314755 cites W1979263106 @default.
- W2593314755 cites W2000621750 @default.
- W2593314755 cites W2006260073 @default.
- W2593314755 cites W2010993344 @default.
- W2593314755 cites W2022266309 @default.
- W2593314755 cites W2056811412 @default.
- W2593314755 cites W2057624924 @default.
- W2593314755 cites W2085232632 @default.
- W2593314755 cites W2090901734 @default.
- W2593314755 cites W2091255497 @default.
- W2593314755 cites W2095809779 @default.
- W2593314755 cites W2109363337 @default.
- W2593314755 cites W2129659619 @default.
- W2593314755 cites W2137349930 @default.
- W2593314755 cites W2141526469 @default.
- W2593314755 cites W2142827986 @default.
- W2593314755 cites W2159294452 @default.
- W2593314755 cites W2161349318 @default.
- W2593314755 cites W2162500454 @default.
- W2593314755 cites W2166361453 @default.
- W2593314755 cites W2911964244 @default.
- W2593314755 cites W4212883601 @default.
- W2593314755 doi "https://doi.org/10.1016/j.asoc.2017.03.002" @default.
- W2593314755 hasPublicationYear "2017" @default.
- W2593314755 type Work @default.
- W2593314755 sameAs 2593314755 @default.
- W2593314755 citedByCount "130" @default.
- W2593314755 countsByYear W25933147552018 @default.
- W2593314755 countsByYear W25933147552019 @default.
- W2593314755 countsByYear W25933147552020 @default.
- W2593314755 countsByYear W25933147552021 @default.
- W2593314755 countsByYear W25933147552022 @default.
- W2593314755 countsByYear W25933147552023 @default.
- W2593314755 crossrefType "journal-article" @default.
- W2593314755 hasAuthorship W2593314755A5015969726 @default.
- W2593314755 hasAuthorship W2593314755A5022101226 @default.
- W2593314755 hasConcept C11413529 @default.
- W2593314755 hasConcept C124101348 @default.
- W2593314755 hasConcept C138885662 @default.
- W2593314755 hasConcept C148483581 @default.
- W2593314755 hasConcept C153180895 @default.
- W2593314755 hasConcept C154945302 @default.
- W2593314755 hasConcept C2776401178 @default.
- W2593314755 hasConcept C33923547 @default.
- W2593314755 hasConcept C41008148 @default.
- W2593314755 hasConcept C41895202 @default.
- W2593314755 hasConcept C48372109 @default.
- W2593314755 hasConcept C81917197 @default.
- W2593314755 hasConcept C94375191 @default.
- W2593314755 hasConceptScore W2593314755C11413529 @default.
- W2593314755 hasConceptScore W2593314755C124101348 @default.
- W2593314755 hasConceptScore W2593314755C138885662 @default.
- W2593314755 hasConceptScore W2593314755C148483581 @default.
- W2593314755 hasConceptScore W2593314755C153180895 @default.
- W2593314755 hasConceptScore W2593314755C154945302 @default.
- W2593314755 hasConceptScore W2593314755C2776401178 @default.
- W2593314755 hasConceptScore W2593314755C33923547 @default.
- W2593314755 hasConceptScore W2593314755C41008148 @default.
- W2593314755 hasConceptScore W2593314755C41895202 @default.
- W2593314755 hasConceptScore W2593314755C48372109 @default.
- W2593314755 hasConceptScore W2593314755C81917197 @default.
- W2593314755 hasConceptScore W2593314755C94375191 @default.
- W2593314755 hasLocation W25933147551 @default.
- W2593314755 hasOpenAccess W2593314755 @default.
- W2593314755 hasPrimaryLocation W25933147551 @default.
- W2593314755 hasRelatedWork W2013349038 @default.
- W2593314755 hasRelatedWork W2159220931 @default.
- W2593314755 hasRelatedWork W2316780152 @default.
- W2593314755 hasRelatedWork W2374344280 @default.
- W2593314755 hasRelatedWork W2547204049 @default.
- W2593314755 hasRelatedWork W27971500 @default.
- W2593314755 hasRelatedWork W2891907751 @default.
- W2593314755 hasRelatedWork W2970216048 @default.
- W2593314755 hasRelatedWork W4307883119 @default.
- W2593314755 hasRelatedWork W2345184372 @default.
- W2593314755 hasVolume "56" @default.
- W2593314755 isParatext "false" @default.
- W2593314755 isRetracted "false" @default.
- W2593314755 magId "2593314755" @default.
- W2593314755 workType "article" @default.