Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593379656> ?p ?o ?g. }
- W2593379656 endingPage "321" @default.
- W2593379656 startingPage "305" @default.
- W2593379656 abstract "Global sea surface temperature (SST) anomalies are observed to have a significant effect on terrestrial precipitation patterns throughout the United States. SST variations have been correlated with terrestrial precipitation via ocean–atmospheric interactions known as climate teleconnections. This study demonstrates how the scale effect could affect the forecasting accuracy with or without the inclusion of those newly discovered unknown teleconnection signals between Adirondack precipitation and SST anomaly in the Atlantic and Pacific oceans. Unique SST regions of both known and unknown telecommunication signals were extracted from the wavelet analysis and used as input variables in an artificial neural network (ANN) forecasting model. Monthly and seasonal scales were considered with respect to a host of long-term (30-year) nonlinear and nonstationary teleconnection signals detected locally at the study site of Adirondack. Similar intra-annual time-lag effects of SST on precipitation variability are salient at both time scales. Sensitivity analysis of four scenarios reveals that more improvements of the forecasting accuracy of the ANN model can be observed by including both known and unknown teleconnection patterns at both time scales, although such improvements are not salient. Research findings also highlight the importance of choosing the forecasting model at the seasonal scale to predict more accurate peak values and global trends of terrestrial precipitation in response to teleconnection signals. The scale shift from monthly to seasonal may improve results by 17% and 17 mm/day in terms of R squared and root of mean square error values, respectively, if both known and unknown SST regions are considered for forecasting." @default.
- W2593379656 created "2017-03-16" @default.
- W2593379656 creator A5019433309 @default.
- W2593379656 creator A5056065129 @default.
- W2593379656 creator A5061110877 @default.
- W2593379656 creator A5083164115 @default.
- W2593379656 date "2017-05-01" @default.
- W2593379656 modified "2023-09-26" @default.
- W2593379656 title "Multi-scale quantitative precipitation forecasting using nonlinear and nonstationary teleconnection signals and artificial neural network models" @default.
- W2593379656 cites W1549026378 @default.
- W2593379656 cites W1977664222 @default.
- W2593379656 cites W1985670671 @default.
- W2593379656 cites W1992113292 @default.
- W2593379656 cites W2002414354 @default.
- W2593379656 cites W2007363851 @default.
- W2593379656 cites W2014342691 @default.
- W2593379656 cites W2019307447 @default.
- W2593379656 cites W2034139177 @default.
- W2593379656 cites W2098111204 @default.
- W2593379656 cites W2119844460 @default.
- W2593379656 cites W2125863264 @default.
- W2593379656 cites W2137356002 @default.
- W2593379656 cites W2137796624 @default.
- W2593379656 cites W2145066372 @default.
- W2593379656 cites W2146664101 @default.
- W2593379656 cites W2154250668 @default.
- W2593379656 cites W2154603172 @default.
- W2593379656 cites W2334046564 @default.
- W2593379656 cites W2395814628 @default.
- W2593379656 cites W2440330901 @default.
- W2593379656 doi "https://doi.org/10.1016/j.jhydrol.2017.03.003" @default.
- W2593379656 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6750726" @default.
- W2593379656 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31534272" @default.
- W2593379656 hasPublicationYear "2017" @default.
- W2593379656 type Work @default.
- W2593379656 sameAs 2593379656 @default.
- W2593379656 citedByCount "11" @default.
- W2593379656 countsByYear W25933796562017 @default.
- W2593379656 countsByYear W25933796562018 @default.
- W2593379656 countsByYear W25933796562020 @default.
- W2593379656 countsByYear W25933796562021 @default.
- W2593379656 countsByYear W25933796562022 @default.
- W2593379656 countsByYear W25933796562023 @default.
- W2593379656 crossrefType "journal-article" @default.
- W2593379656 hasAuthorship W2593379656A5019433309 @default.
- W2593379656 hasAuthorship W2593379656A5056065129 @default.
- W2593379656 hasAuthorship W2593379656A5061110877 @default.
- W2593379656 hasAuthorship W2593379656A5083164115 @default.
- W2593379656 hasBestOaLocation W25933796562 @default.
- W2593379656 hasConcept C105795698 @default.
- W2593379656 hasConcept C107054158 @default.
- W2593379656 hasConcept C121332964 @default.
- W2593379656 hasConcept C123576220 @default.
- W2593379656 hasConcept C127313418 @default.
- W2593379656 hasConcept C12997251 @default.
- W2593379656 hasConcept C134097258 @default.
- W2593379656 hasConcept C139945424 @default.
- W2593379656 hasConcept C153294291 @default.
- W2593379656 hasConcept C205649164 @default.
- W2593379656 hasConcept C26873012 @default.
- W2593379656 hasConcept C2778755073 @default.
- W2593379656 hasConcept C33923547 @default.
- W2593379656 hasConcept C39432304 @default.
- W2593379656 hasConcept C49204034 @default.
- W2593379656 hasConcept C58640448 @default.
- W2593379656 hasConceptScore W2593379656C105795698 @default.
- W2593379656 hasConceptScore W2593379656C107054158 @default.
- W2593379656 hasConceptScore W2593379656C121332964 @default.
- W2593379656 hasConceptScore W2593379656C123576220 @default.
- W2593379656 hasConceptScore W2593379656C127313418 @default.
- W2593379656 hasConceptScore W2593379656C12997251 @default.
- W2593379656 hasConceptScore W2593379656C134097258 @default.
- W2593379656 hasConceptScore W2593379656C139945424 @default.
- W2593379656 hasConceptScore W2593379656C153294291 @default.
- W2593379656 hasConceptScore W2593379656C205649164 @default.
- W2593379656 hasConceptScore W2593379656C26873012 @default.
- W2593379656 hasConceptScore W2593379656C2778755073 @default.
- W2593379656 hasConceptScore W2593379656C33923547 @default.
- W2593379656 hasConceptScore W2593379656C39432304 @default.
- W2593379656 hasConceptScore W2593379656C49204034 @default.
- W2593379656 hasConceptScore W2593379656C58640448 @default.
- W2593379656 hasLocation W25933796561 @default.
- W2593379656 hasLocation W25933796562 @default.
- W2593379656 hasLocation W25933796563 @default.
- W2593379656 hasOpenAccess W2593379656 @default.
- W2593379656 hasPrimaryLocation W25933796561 @default.
- W2593379656 hasRelatedWork W1606552919 @default.
- W2593379656 hasRelatedWork W1964842106 @default.
- W2593379656 hasRelatedWork W1991785752 @default.
- W2593379656 hasRelatedWork W2090013156 @default.
- W2593379656 hasRelatedWork W2163393982 @default.
- W2593379656 hasRelatedWork W2349461297 @default.
- W2593379656 hasRelatedWork W2380492389 @default.
- W2593379656 hasRelatedWork W4320914704 @default.
- W2593379656 hasRelatedWork W4328110956 @default.
- W2593379656 hasRelatedWork W4362732304 @default.
- W2593379656 hasVolume "548" @default.
- W2593379656 isParatext "false" @default.