Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593400895> ?p ?o ?g. }
- W2593400895 endingPage "554" @default.
- W2593400895 startingPage "545" @default.
- W2593400895 abstract "Accurate prediction of adverse cardiac events for the emergency department (ED) chest pain patients is essential in risk stratification due to the current ambiguity in diagnosing acute coronary syndrome. While most current practices rely on human decision by measuring clinical vital signs, computerized solutions are gaining popularity. We have previously proposed an ensemble-based scoring system (ESS). In this paper, we aim to extend the ESS system using extreme learning machine (ELM), a fast learning algorithm for neural networks. We recruited patients from the ED of Singapore General Hospital, and extracted features such as heart rate variability, 12-lead ECG parameters, and vital signs. We also proposed a novel algorithm called ESS-ELM to predict adverse cardiac events. Different from the original ESS algorithm, ESS-ELM uses the under-sampling technique only in model training. Our proposed method was compared to the original ESS algorithm and several clinical scores in predicting patient outcome. With a cohort of 797 recruited patients, we demonstrated that ESS-ELM outperformed the original ESS algorithm and three established clinical scores, namely HEART, TIMI, and GRACE, in terms of receiver operating characteristic analysis. Furthermore, we have investigated the impact of hidden node number and ensemble size on the predictive performance. ELM has demonstrated the flexibility in its integration with the ESS algorithm. Experiments showed the value of ESS-ELM in prediction of adverse cardiac events. Future works may include the use of new ELM-based learning methods and further validation with a new cohort of patients." @default.
- W2593400895 created "2017-03-16" @default.
- W2593400895 creator A5002173339 @default.
- W2593400895 creator A5030967805 @default.
- W2593400895 creator A5049356493 @default.
- W2593400895 creator A5049506273 @default.
- W2593400895 creator A5059452714 @default.
- W2593400895 creator A5074063024 @default.
- W2593400895 creator A5087685316 @default.
- W2593400895 date "2017-03-06" @default.
- W2593400895 modified "2023-10-14" @default.
- W2593400895 title "Ensemble-Based Risk Scoring with Extreme Learning Machine for Prediction of Adverse Cardiac Events" @default.
- W2593400895 cites W1659856658 @default.
- W2593400895 cites W1862394037 @default.
- W2593400895 cites W1978578227 @default.
- W2593400895 cites W1993717606 @default.
- W2593400895 cites W1994452740 @default.
- W2593400895 cites W2019712329 @default.
- W2593400895 cites W2026131661 @default.
- W2593400895 cites W2030507001 @default.
- W2593400895 cites W2031377725 @default.
- W2593400895 cites W2032144792 @default.
- W2593400895 cites W2032764504 @default.
- W2593400895 cites W2034690624 @default.
- W2593400895 cites W2036685768 @default.
- W2593400895 cites W2040647667 @default.
- W2593400895 cites W2044407225 @default.
- W2593400895 cites W2059137883 @default.
- W2593400895 cites W2063700659 @default.
- W2593400895 cites W2067178084 @default.
- W2593400895 cites W2075529349 @default.
- W2593400895 cites W2085657320 @default.
- W2593400895 cites W2087826966 @default.
- W2593400895 cites W2099502830 @default.
- W2593400895 cites W2100653236 @default.
- W2593400895 cites W2107592538 @default.
- W2593400895 cites W2111072639 @default.
- W2593400895 cites W2113640125 @default.
- W2593400895 cites W2114198397 @default.
- W2593400895 cites W2117825493 @default.
- W2593400895 cites W2118978333 @default.
- W2593400895 cites W2120596490 @default.
- W2593400895 cites W2130378394 @default.
- W2593400895 cites W2131694377 @default.
- W2593400895 cites W2148143831 @default.
- W2593400895 cites W2148946317 @default.
- W2593400895 cites W2154568261 @default.
- W2593400895 cites W2165967751 @default.
- W2593400895 cites W2166455641 @default.
- W2593400895 cites W2167917621 @default.
- W2593400895 cites W2168618665 @default.
- W2593400895 cites W2285072859 @default.
- W2593400895 cites W2399642408 @default.
- W2593400895 cites W2415588839 @default.
- W2593400895 cites W2463468632 @default.
- W2593400895 cites W2511220713 @default.
- W2593400895 cites W3021467166 @default.
- W2593400895 doi "https://doi.org/10.1007/s12559-017-9455-7" @default.
- W2593400895 hasPublicationYear "2017" @default.
- W2593400895 type Work @default.
- W2593400895 sameAs 2593400895 @default.
- W2593400895 citedByCount "20" @default.
- W2593400895 countsByYear W25934008952017 @default.
- W2593400895 countsByYear W25934008952018 @default.
- W2593400895 countsByYear W25934008952019 @default.
- W2593400895 countsByYear W25934008952020 @default.
- W2593400895 countsByYear W25934008952021 @default.
- W2593400895 countsByYear W25934008952023 @default.
- W2593400895 crossrefType "journal-article" @default.
- W2593400895 hasAuthorship W2593400895A5002173339 @default.
- W2593400895 hasAuthorship W2593400895A5030967805 @default.
- W2593400895 hasAuthorship W2593400895A5049356493 @default.
- W2593400895 hasAuthorship W2593400895A5049506273 @default.
- W2593400895 hasAuthorship W2593400895A5059452714 @default.
- W2593400895 hasAuthorship W2593400895A5074063024 @default.
- W2593400895 hasAuthorship W2593400895A5087685316 @default.
- W2593400895 hasBestOaLocation W25934008952 @default.
- W2593400895 hasConcept C119857082 @default.
- W2593400895 hasConcept C126322002 @default.
- W2593400895 hasConcept C141071460 @default.
- W2593400895 hasConcept C154945302 @default.
- W2593400895 hasConcept C2776890885 @default.
- W2593400895 hasConcept C2780150128 @default.
- W2593400895 hasConcept C41008148 @default.
- W2593400895 hasConcept C45942800 @default.
- W2593400895 hasConcept C50644808 @default.
- W2593400895 hasConcept C71924100 @default.
- W2593400895 hasConcept C72563966 @default.
- W2593400895 hasConceptScore W2593400895C119857082 @default.
- W2593400895 hasConceptScore W2593400895C126322002 @default.
- W2593400895 hasConceptScore W2593400895C141071460 @default.
- W2593400895 hasConceptScore W2593400895C154945302 @default.
- W2593400895 hasConceptScore W2593400895C2776890885 @default.
- W2593400895 hasConceptScore W2593400895C2780150128 @default.
- W2593400895 hasConceptScore W2593400895C41008148 @default.
- W2593400895 hasConceptScore W2593400895C45942800 @default.
- W2593400895 hasConceptScore W2593400895C50644808 @default.
- W2593400895 hasConceptScore W2593400895C71924100 @default.