Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593552556> ?p ?o ?g. }
- W2593552556 endingPage "e0173684" @default.
- W2593552556 startingPage "e0173684" @default.
- W2593552556 abstract "The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle." @default.
- W2593552556 created "2017-03-16" @default.
- W2593552556 creator A5019060959 @default.
- W2593552556 creator A5047523823 @default.
- W2593552556 creator A5086647344 @default.
- W2593552556 date "2017-03-10" @default.
- W2593552556 modified "2023-10-04" @default.
- W2593552556 title "Iterative free-energy optimization for recurrent neural networks (INFERNO)" @default.
- W2593552556 cites W130688056 @default.
- W2593552556 cites W1489333352 @default.
- W2593552556 cites W1538424073 @default.
- W2593552556 cites W1541385535 @default.
- W2593552556 cites W1661597557 @default.
- W2593552556 cites W1906221854 @default.
- W2593552556 cites W1972732448 @default.
- W2593552556 cites W1977576450 @default.
- W2593552556 cites W1979464096 @default.
- W2593552556 cites W1989874246 @default.
- W2593552556 cites W2001483784 @default.
- W2593552556 cites W2007690599 @default.
- W2593552556 cites W2010242617 @default.
- W2593552556 cites W2016708835 @default.
- W2593552556 cites W2020134397 @default.
- W2593552556 cites W2021306965 @default.
- W2593552556 cites W2021682909 @default.
- W2593552556 cites W2022989028 @default.
- W2593552556 cites W2025293658 @default.
- W2593552556 cites W2025516261 @default.
- W2593552556 cites W2026153973 @default.
- W2593552556 cites W2033708181 @default.
- W2593552556 cites W2036451492 @default.
- W2593552556 cites W2039253189 @default.
- W2593552556 cites W2039382055 @default.
- W2593552556 cites W2059156134 @default.
- W2593552556 cites W2060561757 @default.
- W2593552556 cites W2075514521 @default.
- W2593552556 cites W2076944496 @default.
- W2593552556 cites W2081400604 @default.
- W2593552556 cites W2082981205 @default.
- W2593552556 cites W2083913562 @default.
- W2593552556 cites W2084897272 @default.
- W2593552556 cites W2085612867 @default.
- W2593552556 cites W2090805568 @default.
- W2593552556 cites W2092305992 @default.
- W2593552556 cites W2096375888 @default.
- W2593552556 cites W2097823793 @default.
- W2593552556 cites W2099652807 @default.
- W2593552556 cites W2103768739 @default.
- W2593552556 cites W2105249047 @default.
- W2593552556 cites W2106069155 @default.
- W2593552556 cites W2107886772 @default.
- W2593552556 cites W2109203825 @default.
- W2593552556 cites W2111935653 @default.
- W2593552556 cites W2112090702 @default.
- W2593552556 cites W2113748017 @default.
- W2593552556 cites W2117010589 @default.
- W2593552556 cites W2119885245 @default.
- W2593552556 cites W2121810519 @default.
- W2593552556 cites W2121982675 @default.
- W2593552556 cites W2123492218 @default.
- W2593552556 cites W2123713131 @default.
- W2593552556 cites W2126880773 @default.
- W2593552556 cites W2127958135 @default.
- W2593552556 cites W2133877521 @default.
- W2593552556 cites W2135544531 @default.
- W2593552556 cites W2139293853 @default.
- W2593552556 cites W2139295975 @default.
- W2593552556 cites W2147008239 @default.
- W2593552556 cites W2149892666 @default.
- W2593552556 cites W2151103178 @default.
- W2593552556 cites W2152179757 @default.
- W2593552556 cites W2153540282 @default.
- W2593552556 cites W2157376352 @default.
- W2593552556 cites W2161563886 @default.
- W2593552556 cites W2165293155 @default.
- W2593552556 cites W2167362547 @default.
- W2593552556 cites W2167956961 @default.
- W2593552556 cites W2169134378 @default.
- W2593552556 cites W2196029776 @default.
- W2593552556 cites W2229830468 @default.
- W2593552556 cites W2283674326 @default.
- W2593552556 cites W2294936114 @default.
- W2593552556 cites W2295845209 @default.
- W2593552556 cites W2343320647 @default.
- W2593552556 cites W2344431521 @default.
- W2593552556 cites W2416925828 @default.
- W2593552556 cites W2530887700 @default.
- W2593552556 cites W2919115771 @default.
- W2593552556 cites W2951078071 @default.
- W2593552556 cites W3101795583 @default.
- W2593552556 cites W3105397496 @default.
- W2593552556 cites W4214717370 @default.
- W2593552556 cites W4242770316 @default.
- W2593552556 cites W4320300820 @default.
- W2593552556 cites W65738273 @default.
- W2593552556 doi "https://doi.org/10.1371/journal.pone.0173684" @default.
- W2593552556 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5345841" @default.
- W2593552556 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28282439" @default.