Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593792543> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2593792543 abstract "EFSA Supporting PublicationsVolume 8, Issue 12 91E External scientific reportOpen Access Statistical Evaluation of the Achievements by Member States of the EU Salmonella Reduction Targets in Animal Populations C. Sotto, C. Sotto CenStat, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University & Katholieke Universiteit Leuven, Agoralaan 1, Bldg. D, 3590, Diepenbeek, BelgiumSearch for more papers by this authorS. LitiϨre, S. LitiϨre CenStat, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University & Katholieke Universiteit Leuven, Agoralaan 1, Bldg. D, 3590, Diepenbeek, BelgiumSearch for more papers by this authorM. Aerts, M. Aerts CenStat, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University & Katholieke Universiteit Leuven, Agoralaan 1, Bldg. D, 3590, Diepenbeek, BelgiumSearch for more papers by this author C. Sotto, C. Sotto CenStat, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University & Katholieke Universiteit Leuven, Agoralaan 1, Bldg. D, 3590, Diepenbeek, BelgiumSearch for more papers by this authorS. LitiϨre, S. LitiϨre CenStat, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University & Katholieke Universiteit Leuven, Agoralaan 1, Bldg. D, 3590, Diepenbeek, BelgiumSearch for more papers by this authorM. Aerts, M. Aerts CenStat, Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University & Katholieke Universiteit Leuven, Agoralaan 1, Bldg. D, 3590, Diepenbeek, BelgiumSearch for more papers by this author First published: 05 December 2011 https://doi.org/10.2903/sp.efsa.2011.EN-91 The present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. Based on an internal decision of the European Food Safety Authority, the present report is not published. It may not be considered as an output adopted by EFSA. EFSA reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors. Published date: 5 December 2011 Question number: EFSA-Q-2009-00831 AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat References Aerts M, Geys H, Molenberghs G and Ryan L, 2002. Topics in Modelling of Clustered Data. London: Chapman & Hall. Agresti A, 2007. An introduction to Categorical Data Analysis ( 2nd ed). New York: Wiley. Barnett V, 2002. Sample Survey: Principles and Methods ( 3rd ed). London: Arnold. Bollaerts K, Aerts M, Hens N, Shkedy Z, Faes C, Van der Stede Y and Beutels P, 2010. Estimating epidemiological parameters by using mixture-models for serological data. Submitted. Chambers RL and Skinner CJ, 2003. Analysis of Survey Data. New York: Wiley Copas JB, 1989. Unweighted sum of squares test for proportions. Applied Statistics 38, 71– 80. Dempster AP, Selwyn MR and Weeks BJ, 1983. Combining historical and randomized controls for assessing trends in proportions. Journal of the American Statistical Association 78, 221– 227. Diggle PJ, Liang KY and Zeger SL, 1994. Analysis of Longitudinal Data. Oxford: Oxford University Press. Diggle PJ, Heagerty PJ, Liang KY and Zeger SL, 2002. Analysis of Longitudinal Data ( 2nd ed). Oxford Science Publications. Oxford: Clarendon Press. EFSA (European Food Safety Authority), 2011. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2009. EFSA Journal 2011; 9(3): 2090. Eilers PHC and Marx BD, 1996. Flexible smoothing with B-splines and penalties. Statistical Science 11, 89– 121. Evans S and Hosmer DW, 2004. Goodness of fit tests for the logistic GEE models: simulation results. Communications in Statistics: Simulation and Computation 33, 247– 258. Evans S and Li L, 2005. A comparison of goodness of fit tests for the logistic GEE model. Statistics in Medicine 24, 1245– 1261. Faes C, Aerts M, Geys H, Bijnens L, Ver Donck L and Lammers W, 2006. GLMM approach to study the spatial and temporal evolution of spikes in the small intestine. Statistical Modelling 6, 300– 320. Faes C, Aerts M, Litiere S, Meroc E, Van der Stede Y and Mintiens K, 2010. Estimating the herd-prevalence based on aggregate testing of animals. Journal of the Royal Statistical Society A 00, 000– 000. Farrington CP, 1996. On assessing goodness of fit of generalized linear models to sparse data. Journal of the Royal Statistical Society B 58, 349– 360. Friedman JH and Silverman BW, 1989. Flexible parsimonious smoothing and additive modelling. Technometrics 31, 3– 39. Gelman A, Carlin JB, Stern HS and Rubin DB, 2004. Bayesian Data Analysis ( 2nd ed). London: Chapman & Hall. Grubbs FE, 1962. Attempts to validate certain PERT statistics or picking on PERT. Operations Research 10, 912– 915. Hosmer DW and Lemeshow S, 2000. Applied Logistic Regression ( 2nd ed). Wiley: New York, 2000. Knottnerus P, 2003. Sample Survey Theory. New York: Springer. Kuss O, 2002. Global goodness-of-fit tests in logistic regression with sparse data. Statistics in Medicine 21, 3789– 3801. Kutner MH, Nachtsheim CJ, Neter J and Li W, 2004. Applied Linear Statistical Models ( 5th ed). McGraw-Hill/Irwin. Liang KY and Zeger SL, 1986. Longitudinal data analysis using generalized linear models. Biometrika 73, 13– 22. McCullagh P, 1985. On the asymptotic distribution of Pearson's statistic in linear exponential-family models. International Statistical Review 53, 61– 67. Maringwa JT, Geys H, Shkedy Z, Faes C, Molenberghs G, Aerts M, Van Ammel K, Teisman A and Bijnens L, 2006. Analysis of a cardiovascular safety experiment with longitudinal data using penalized splines. In: Proceedings of the 21st Internation Workshop on Statistical Modelling. J. Hinde, J. Einbeck and J. Newell (Eds) Galway Ireland, 346– 353. Molenberghs G and Verbeke G, 2005. Models for Discrete Longitudinal Data. New York: Springer-Verlag. Nelson W, 1982. Applied Life Data Analysis. New York: Wiley. Neuhaus JM, 1992. Statistical methods for longitudinal and clustered designs with binary responses. Statistical Methods in Medical Research 1, 249– 273. Orme C, 1988. The calculation of the information matrix test for binary data models. The Manchester School 54, 370– 376. Osius G and Rojek D, 1992. Normal goodness-of-fit tests for multinomial models with large degrees of freedom. Journal of the American Statistical Association 87, 1145– 1152. Pan W, 2001. Akaike's information criterion in generalized estimating equations. Biometrics 57, 120– 125. Parise H, Wand MP, Ruppert D and Ryan L, 2001. Incorporation of historical controls using semi-parametric mixed models. Applied Statistics 50, 31– 42. Rogan WMJ and Gladen B, 1978. Estimating prevalence from the results of a screening test. American Journal of Epidemiology 107, 71– 76. Robert CP, 2007. The Bayesian Choice. Springer. Ruppert D, 2002. Selecting the number of knots for penalized splines. Journal of Computational and Graphical Statistics 11, 735– 757. Ruppert D, Wand MP and Carroll RJ, 2003. Semiparametric Regression. Cambridge University Press. Skellam JG, 1948. A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials. Journal of the Royal Statististical Society B 10, 257– 261. Skinner CJ, Holt D and Smith TMF, 1989. Analysis of Complex Surveys. New York: Wiley. Stiratelli R, Laird N and Ware JH, 1984. Random effects models for serial observations with binary responses. Biometrics 40, 961– 971. Welsh AH, Lin X and Carroll RJ, 2002. Marginal longitudinal nonparametric regression: locality and efficiency of spline and kernel methods. Journal of the American Statistical Association 97, 482– 493. White H, 1982. Maximum likelihood estimation of misspecified models. Econometrica 50, 1– 25. Zeger SL and Liang KY, 1986. Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 42, 121– 130. Volume8, Issue12December 201191E ReferencesRelatedInformation" @default.
- W2593792543 created "2017-03-16" @default.
- W2593792543 creator A5070093626 @default.
- W2593792543 creator A5073339276 @default.
- W2593792543 creator A5091176792 @default.
- W2593792543 date "2011-12-01" @default.
- W2593792543 modified "2023-10-16" @default.
- W2593792543 title "Statistical Evaluation of the Achievements by Member States of the EU Salmonella Reduction Targets in Animal Populations" @default.
- W2593792543 cites W1423766661 @default.
- W2593792543 cites W1493790738 @default.
- W2593792543 cites W1964113614 @default.
- W2593792543 cites W1978136073 @default.
- W2593792543 cites W1982521435 @default.
- W2593792543 cites W1990420052 @default.
- W2593792543 cites W1990681166 @default.
- W2593792543 cites W2002113995 @default.
- W2593792543 cites W2024085858 @default.
- W2593792543 cites W2027106381 @default.
- W2593792543 cites W2049667592 @default.
- W2593792543 cites W2055362477 @default.
- W2593792543 cites W2059497768 @default.
- W2593792543 cites W2060210543 @default.
- W2593792543 cites W2069265373 @default.
- W2593792543 cites W2103958007 @default.
- W2593792543 cites W2110776215 @default.
- W2593792543 cites W2127332440 @default.
- W2593792543 cites W2149860264 @default.
- W2593792543 cites W2159805002 @default.
- W2593792543 cites W2271596670 @default.
- W2593792543 cites W2318560243 @default.
- W2593792543 cites W2490188439 @default.
- W2593792543 cites W2529897098 @default.
- W2593792543 cites W4246784033 @default.
- W2593792543 cites W4251505870 @default.
- W2593792543 cites W4299689471 @default.
- W2593792543 cites W4376848218 @default.
- W2593792543 cites W650374459 @default.
- W2593792543 doi "https://doi.org/10.2903/sp.efsa.2011.en-91" @default.
- W2593792543 hasPublicationYear "2011" @default.
- W2593792543 type Work @default.
- W2593792543 sameAs 2593792543 @default.
- W2593792543 citedByCount "0" @default.
- W2593792543 crossrefType "journal-article" @default.
- W2593792543 hasAuthorship W2593792543A5070093626 @default.
- W2593792543 hasAuthorship W2593792543A5073339276 @default.
- W2593792543 hasAuthorship W2593792543A5091176792 @default.
- W2593792543 hasConcept C111335779 @default.
- W2593792543 hasConcept C144133560 @default.
- W2593792543 hasConcept C155202549 @default.
- W2593792543 hasConcept C17744445 @default.
- W2593792543 hasConcept C2524010 @default.
- W2593792543 hasConcept C2781065037 @default.
- W2593792543 hasConcept C2910001868 @default.
- W2593792543 hasConcept C3019422483 @default.
- W2593792543 hasConcept C33923547 @default.
- W2593792543 hasConcept C523546767 @default.
- W2593792543 hasConcept C54355233 @default.
- W2593792543 hasConcept C86803240 @default.
- W2593792543 hasConceptScore W2593792543C111335779 @default.
- W2593792543 hasConceptScore W2593792543C144133560 @default.
- W2593792543 hasConceptScore W2593792543C155202549 @default.
- W2593792543 hasConceptScore W2593792543C17744445 @default.
- W2593792543 hasConceptScore W2593792543C2524010 @default.
- W2593792543 hasConceptScore W2593792543C2781065037 @default.
- W2593792543 hasConceptScore W2593792543C2910001868 @default.
- W2593792543 hasConceptScore W2593792543C3019422483 @default.
- W2593792543 hasConceptScore W2593792543C33923547 @default.
- W2593792543 hasConceptScore W2593792543C523546767 @default.
- W2593792543 hasConceptScore W2593792543C54355233 @default.
- W2593792543 hasConceptScore W2593792543C86803240 @default.
- W2593792543 hasIssue "12" @default.
- W2593792543 hasLocation W25937925431 @default.
- W2593792543 hasOpenAccess W2593792543 @default.
- W2593792543 hasPrimaryLocation W25937925431 @default.
- W2593792543 hasRelatedWork W2025755499 @default.
- W2593792543 hasRelatedWork W2090214507 @default.
- W2593792543 hasRelatedWork W2186925521 @default.
- W2593792543 hasRelatedWork W2525133610 @default.
- W2593792543 hasRelatedWork W2748952813 @default.
- W2593792543 hasRelatedWork W2784138367 @default.
- W2593792543 hasRelatedWork W2899084033 @default.
- W2593792543 hasRelatedWork W2940576789 @default.
- W2593792543 hasRelatedWork W3106931559 @default.
- W2593792543 hasRelatedWork W3154302824 @default.
- W2593792543 hasVolume "8" @default.
- W2593792543 isParatext "false" @default.
- W2593792543 isRetracted "false" @default.
- W2593792543 magId "2593792543" @default.
- W2593792543 workType "article" @default.