Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593800966> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2593800966 abstract "Purpose: Investigate the utility of patient-specific spatial predictions of tumor cell density from a bio-mathematical model. Introduction: Glioblastomas (GBMs) are the most malignant of all primary brain tumors. While it is known there is always a non-detectable portion of the tumor, current techniques of monitoring GBM progression, imaging and initial histological assessment, are not able to reliably estimate the tumor invasion past the enhancing region on T2-Weighted (T2W) imaging. Over the last two decades, a large effort has been made to create a simple patient-specific mathematical model of gliomas. The resulting model, referred to as the Proliferation-Invasion (PI) model, is based on two key parameters, the net growth rate, ρ, and the dispersal coefficient, D. In this model, the ratio of D/ρ is related to degree of invasion and the product D*ρ, is related to the speed of growth. The intuitive understanding provided by this model has been able to provide patient-specific understanding of disease kinetics enabling prediction of outcomes following surgical resection, radiation and the development of a prognostic response metric. Previous literature utilizing this model has been based on the assumption that what is seen on the pretreatment T1-Weighted contrast-enhanced (T1Gd) and T2W, images correspond to an 80% and 16% tumor cell density threshold respectively. This assumption allows for an estimate of D/ρ from a single time point of imaging. While these values were based on extensive experience, for ethical and technical reasons, they have never been rigorously investigated histologically. Recent technological advances have made it possible for surgeons to use an MRI to guide the acquisition of tissue making it possible to know with a good degree of accuracy where on the MR image the histological specimen comes from. Methods: Model Calibration : To estimate D/ρ for each patient, we assume abnormalities on the T1Gd and T2W images correspond to an 80% and 16% tumor cell density threshold respectively. We then utilize a Bayesian calibration approach based on adaptive grid refinement while holding the velocity constant to find the most likely value of D/ρ to match the observed radial measurements. Three-Dimensional Density Maps : Given a gray/white segmentation and an estimate for D/ρ, we can build a tumor cell density prediction in the patient9s anatomy using the Eikonal equations and the modified Fast Marching Method (FMM) algorithm presented by Konukoglu et al. Patient Cohort : Eighteen patients were recruited with clinically suspected GBM undergoing preoperative stereotactic MRI for surgical resection with IRB approval Barrow Neurological Institute and Mayo Clinic in Arizona. Surgical Biopsy : Pre-operative conventional MRI, including T1Gd and T2W, was utilized to guide stereotactic biopsies. An average of 5–6 tissue specimens were acquired from each tumor by using stereotactic surgical localization, following the smallest possible diameter craniotomies to minimize brain shift. Histological Analysis : 4 μm tissue sections were stained with hematoxylin and eosin (HE 2016 Jun 25-28; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2017;77(2 Suppl):Abstract nr A08." @default.
- W2593800966 created "2017-03-16" @default.
- W2593800966 creator A5008718222 @default.
- W2593800966 creator A5012677271 @default.
- W2593800966 creator A5014011778 @default.
- W2593800966 creator A5021651395 @default.
- W2593800966 creator A5022818128 @default.
- W2593800966 creator A5033435512 @default.
- W2593800966 creator A5052721598 @default.
- W2593800966 creator A5058133357 @default.
- W2593800966 creator A5064308365 @default.
- W2593800966 creator A5069823101 @default.
- W2593800966 creator A5079465450 @default.
- W2593800966 creator A5083325281 @default.
- W2593800966 creator A5089617095 @default.
- W2593800966 creator A5091805367 @default.
- W2593800966 date "2017-01-15" @default.
- W2593800966 modified "2023-10-06" @default.
- W2593800966 title "Abstract A08: Histologic evidence for a bio-mathematical model of glioblastoma invasion" @default.
- W2593800966 doi "https://doi.org/10.1158/1538-7445.epso16-a08" @default.
- W2593800966 hasPublicationYear "2017" @default.
- W2593800966 type Work @default.
- W2593800966 sameAs 2593800966 @default.
- W2593800966 citedByCount "0" @default.
- W2593800966 crossrefType "proceedings-article" @default.
- W2593800966 hasAuthorship W2593800966A5008718222 @default.
- W2593800966 hasAuthorship W2593800966A5012677271 @default.
- W2593800966 hasAuthorship W2593800966A5014011778 @default.
- W2593800966 hasAuthorship W2593800966A5021651395 @default.
- W2593800966 hasAuthorship W2593800966A5022818128 @default.
- W2593800966 hasAuthorship W2593800966A5033435512 @default.
- W2593800966 hasAuthorship W2593800966A5052721598 @default.
- W2593800966 hasAuthorship W2593800966A5058133357 @default.
- W2593800966 hasAuthorship W2593800966A5064308365 @default.
- W2593800966 hasAuthorship W2593800966A5069823101 @default.
- W2593800966 hasAuthorship W2593800966A5079465450 @default.
- W2593800966 hasAuthorship W2593800966A5083325281 @default.
- W2593800966 hasAuthorship W2593800966A5089617095 @default.
- W2593800966 hasAuthorship W2593800966A5091805367 @default.
- W2593800966 hasConcept C142724271 @default.
- W2593800966 hasConcept C154945302 @default.
- W2593800966 hasConcept C162324750 @default.
- W2593800966 hasConcept C176217482 @default.
- W2593800966 hasConcept C21547014 @default.
- W2593800966 hasConcept C2776194525 @default.
- W2593800966 hasConcept C2778227246 @default.
- W2593800966 hasConcept C2989005 @default.
- W2593800966 hasConcept C41008148 @default.
- W2593800966 hasConcept C502942594 @default.
- W2593800966 hasConcept C71924100 @default.
- W2593800966 hasConceptScore W2593800966C142724271 @default.
- W2593800966 hasConceptScore W2593800966C154945302 @default.
- W2593800966 hasConceptScore W2593800966C162324750 @default.
- W2593800966 hasConceptScore W2593800966C176217482 @default.
- W2593800966 hasConceptScore W2593800966C21547014 @default.
- W2593800966 hasConceptScore W2593800966C2776194525 @default.
- W2593800966 hasConceptScore W2593800966C2778227246 @default.
- W2593800966 hasConceptScore W2593800966C2989005 @default.
- W2593800966 hasConceptScore W2593800966C41008148 @default.
- W2593800966 hasConceptScore W2593800966C502942594 @default.
- W2593800966 hasConceptScore W2593800966C71924100 @default.
- W2593800966 hasLocation W25938009661 @default.
- W2593800966 hasOpenAccess W2593800966 @default.
- W2593800966 hasPrimaryLocation W25938009661 @default.
- W2593800966 hasRelatedWork W192091 @default.
- W2593800966 hasRelatedWork W3709636 @default.
- W2593800966 hasRelatedWork W6234047 @default.
- W2593800966 hasRelatedWork W6777478 @default.
- W2593800966 hasRelatedWork W7442368 @default.
- W2593800966 hasRelatedWork W805853 @default.
- W2593800966 hasRelatedWork W8214318 @default.
- W2593800966 hasRelatedWork W845003 @default.
- W2593800966 hasRelatedWork W8792627 @default.
- W2593800966 hasRelatedWork W8678413 @default.
- W2593800966 isParatext "false" @default.
- W2593800966 isRetracted "false" @default.
- W2593800966 magId "2593800966" @default.
- W2593800966 workType "article" @default.