Matches in SemOpenAlex for { <https://semopenalex.org/work/W2593965611> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2593965611 abstract "[eng] The objective of this PhD thesis has been the study of the mechanisms that stabilize high-spin states in organic molecule-based magnetic materials. These materials require organic radicals with permanent magnetic moment as building units. Additionally, these molecules need to interact ferromagnetically, and expand that interaction along all three directions of the space. We have carried out our studies using computational chemistry techniques, mostly ab- initio methods (MP2, CASSCF and CASMP2), and DFT-based methods (B3LYP or M06L). Besides, we have also used the hybrid Molecular Mechanics Valence Bond method (MMVB) for alternant hydrocarbons with high number of active electrons. We have demonstrated that in organic radicals the energy gap between two spin states is usually higher when the stabilization of the spin centers occurs by means of through- bond (TB) instead of through-space (TS) interactions. As a result, alternant hydrocarbons (?-delocalized, with TB interactions) are more stable than non-alternant hydrocarbons (?-localized, with TS interactions). Therefore, alternant hydrocarbons would be preferable in the design of permanent molecular magnets. Polymerization of high-spin radicals leads to high-spin systems. However, our research showed that the gap of energy between the first and second spin states decreases with the number of units bonded when these are alternant hydrocarbons. On the other hand, it has been proved that, when the synthesis of macro-radicals follows the SU-CU- SU methodology (SU=spin-containing unit; CU=coupling unit), the SU and CU units keep their multiplicity once coupled. In that case, the energy gap between the spin states of the system can be described considering the energy gap of the spin states of the constitutive units. McConnell-I theory is widely applied to describe ferromagnetic intermolecular interactions. Our research has revised systematically this approach. We have explored the existence of a magneto-structural relationship using pairs of well-known radicals (H2NO·, ·CH3 and ·C3H5) at different geometrical orientations. We demonstrated that McConnell-I model predicts correctly the spin preference of the ground state when the interacting spin-containing radical centers are placed in parallel planes and there are mainly TS interactions between them. However, in other cases, the prediction of the spin preference becomes very complex, and more detailed quantum calculations are required. Overall, we have demonstrated that this model must be used carefully when predicting the multiplicity of the through-space interaction between two radicals. Further, we evaluated whether McConnell-I theory could be applied to assess the magnetic character of real crystals on the subset of experimentally FM crystals of the ?- nitronyl nitroxide (?-NN) family. We analyzed the closest contacts between two intermolecular ONCNO groups (atoms where the spin densities are mainly located) for each chosen crystal. We concluded that the ONCNO interactions do not describe entirely the observed macroscopic magnetic property for all the systems. Consequently, TS interactions not considered in the simplistic ONCNO model must play an important role defining the magnetic character. Secondly, we proved there is not a simple magneto-structural relationship, such as the one suggested in McConnell-I model, that can be applied to all through-space interactions in the crystals. This conclusion was reached after a twofold statistical analysis (namely, factor and cluster analyses) of the geometrical parameters as a function of the calculated energy gap ?ES-T. Charge-transfer salts are successful examples of molecular magnets. However, the formation of diamagnetic dimers of the donor species, [D]22+, or the acceptor species, [A]22-, causes the loss of the magnetic properties. We studied the causes of this dimerization studying the formation of TCNE dimers, [TCNE]22-], as a prototypical example of an organic acceptor. The Eint of two charged molecules has two components: the Coulomb contribution (Ecoul > 0, for molecules with the same charge) and the bonding energy (Ebond |Ebond|) the two molecules will repel and the formation of the dimer will not be stable (Eint > 0). However, if there is any force that counterbalances the repulsion between the two charged molecules, the bonding energy could overcome the repulsion energy in absolute value (|Ecoul|<|Ebond|), and the metastable minima would become stable (Eint < 0). The calculations performed described three metastable minima that agree with those observed experimentally. Besides, the spectroscopic features of each class of these three dimers have been calculated and are in agreement with the available experimental data. Extended calculations performed in the presence of cations or polar solvents resulted in the stabilization of the dimers, which demonstrates that counterbalance of the repulsive energy is needed for the formation of these long multicenter bonds. The two electrons - four centers (2e-/4c) bond described is unique since it involves 2e- and takes place among four carbon atoms chemically equivalent. [spa] El objetivo de esta tesis ha sido estudiar computacionalmente las bases teoricas del magnetismo molecular para poder utilizar el conocimiento adquirido en el diseno de materiales magneticos moleculares. Hemos analizado los mecanismos a traves del enlace (TB: through-bond) y a traves del espacio (TS: through-space) que estabilizan moleculas de alto spin (radicales) y sus interaccionan intermoleculares ferromagneticas. Para llevar a cabo dichos estudios se han utilizado metodos hibridos como el Molecular Mechanics Valence Bond (MMVB), metodos DFT como el B3LYP y metodos ab-initio como MP2, CASSCF, y CASMP2. Asi pues, por un lado, se ha estudiado la estabilidad de moleculas organicas de alto spin y su posible polimerizacion manteniendo su alta multiplicidad de spin. Se ha llegado a la conclusion que el mecanismo TS es de menor coste energetico que el TB. Por lo tanto, los radicales cuyos centros de spin se estabilizan a traves del enlace TB son mas estables. Asimismo, compuestos que presentan ambos mecanismos, los estados de spin de los estados fundamental y primer excitado vendran determinados por el mecanismo TS. Por otro lado, se estudiaron las interacciones intermoleculares entre radicales, con el objetivo de establecer las condiciones que favorecen las que son ferromagneticas. En este contexto, se evaluo la teoria denominada McConnell-I. Tras metodicos estudios de la interaccion entre dos radicales (H2NO·, ·CH3 y ·C2H6) en diferentes orientaciones en el espacio, se concluyo que el ambito de aplicacion de esta teoria esta limitado a cuando los centros de spin interaccionan en planos paralelos y existe una interaccion TS predominante. Estudios adicionales en cristales de la familia ?-nitronil nitroxido demostraron que la teoria de McConnell-I no se puede aplicar de forma general a cualquier interaccion intermolecular entre radicales. Se observo que esta teoria no predice correctamente el comportamiento magnetico de cristales cuando se analiza solo la interaccion entre los atomos que contienen mayoritariamente la densidad de spin (ONCNO). Asi pues, el estudio se debe ampliar a otros contactos entre las moleculas para poder describir correctamente el comportamiento magnetico observado. Finalmente hemos establecido que, en sales de transferencia de carga, se dan casos de dimerizacion de las especies constituyentes, por ejemplo tetracianoetileno (TCNE), cuando la repulsion entre especies de la misma carga se minimiza por la presencia de contra-iones o disolventes polares. De esta manera, se favorece la formacion del enlace en el dimero al permitir la interaccion de los electrones desapareados." @default.
- W2593965611 created "2017-03-16" @default.
- W2593965611 creator A5043193120 @default.
- W2593965611 creator A5045426298 @default.
- W2593965611 date "2016-12-21" @default.
- W2593965611 modified "2023-09-24" @default.
- W2593965611 title "Computational Study of the Mechanisms that Stabilize Organic Molecule‐Based Magnets" @default.
- W2593965611 hasPublicationYear "2016" @default.
- W2593965611 type Work @default.
- W2593965611 sameAs 2593965611 @default.
- W2593965611 citedByCount "0" @default.
- W2593965611 crossrefType "dissertation" @default.
- W2593965611 hasAuthorship W2593965611A5043193120 @default.
- W2593965611 hasAuthorship W2593965611A5045426298 @default.
- W2593965611 hasConcept C115260700 @default.
- W2593965611 hasConcept C121332964 @default.
- W2593965611 hasConcept C127413603 @default.
- W2593965611 hasConcept C159467904 @default.
- W2593965611 hasConcept C16389437 @default.
- W2593965611 hasConcept C171250308 @default.
- W2593965611 hasConcept C178790620 @default.
- W2593965611 hasConcept C185592680 @default.
- W2593965611 hasConcept C192562407 @default.
- W2593965611 hasConcept C2984497647 @default.
- W2593965611 hasConcept C2993052585 @default.
- W2593965611 hasConcept C32546565 @default.
- W2593965611 hasConcept C32909587 @default.
- W2593965611 hasConcept C62520636 @default.
- W2593965611 hasConcept C78519656 @default.
- W2593965611 hasConceptScore W2593965611C115260700 @default.
- W2593965611 hasConceptScore W2593965611C121332964 @default.
- W2593965611 hasConceptScore W2593965611C127413603 @default.
- W2593965611 hasConceptScore W2593965611C159467904 @default.
- W2593965611 hasConceptScore W2593965611C16389437 @default.
- W2593965611 hasConceptScore W2593965611C171250308 @default.
- W2593965611 hasConceptScore W2593965611C178790620 @default.
- W2593965611 hasConceptScore W2593965611C185592680 @default.
- W2593965611 hasConceptScore W2593965611C192562407 @default.
- W2593965611 hasConceptScore W2593965611C2984497647 @default.
- W2593965611 hasConceptScore W2593965611C2993052585 @default.
- W2593965611 hasConceptScore W2593965611C32546565 @default.
- W2593965611 hasConceptScore W2593965611C32909587 @default.
- W2593965611 hasConceptScore W2593965611C62520636 @default.
- W2593965611 hasConceptScore W2593965611C78519656 @default.
- W2593965611 hasLocation W25939656111 @default.
- W2593965611 hasOpenAccess W2593965611 @default.
- W2593965611 hasPrimaryLocation W25939656111 @default.
- W2593965611 hasRelatedWork W1994160334 @default.
- W2593965611 hasRelatedWork W209113794 @default.
- W2593965611 hasRelatedWork W2184306556 @default.
- W2593965611 hasRelatedWork W2184947271 @default.
- W2593965611 hasRelatedWork W2282833427 @default.
- W2593965611 hasRelatedWork W2507935901 @default.
- W2593965611 hasRelatedWork W2733708296 @default.
- W2593965611 hasRelatedWork W2895410442 @default.
- W2593965611 hasRelatedWork W2953902420 @default.
- W2593965611 hasRelatedWork W2977590468 @default.
- W2593965611 hasRelatedWork W2982045603 @default.
- W2593965611 hasRelatedWork W2991933721 @default.
- W2593965611 hasRelatedWork W3041164361 @default.
- W2593965611 hasRelatedWork W3083808013 @default.
- W2593965611 hasRelatedWork W3110084006 @default.
- W2593965611 hasRelatedWork W3146273570 @default.
- W2593965611 hasRelatedWork W3166786459 @default.
- W2593965611 hasRelatedWork W3168081526 @default.
- W2593965611 hasRelatedWork W84452690 @default.
- W2593965611 hasRelatedWork W2550678290 @default.
- W2593965611 isParatext "false" @default.
- W2593965611 isRetracted "false" @default.
- W2593965611 magId "2593965611" @default.
- W2593965611 workType "dissertation" @default.