Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594235617> ?p ?o ?g. }
- W2594235617 endingPage "013017" @default.
- W2594235617 startingPage "013017" @default.
- W2594235617 abstract "A new method, MICO-LDASR, is proposed to improve the classification accuracy of fused radar and optical data. The proposed algorithm combines three algorithms: multiplicative intrinsic component optimization (MICO), linear discriminant analysis (LDA), and sparse regularization (SR). MICO-LDASR first corrects the bias fields of the input images by an energy minimization process and then selects the most discriminative image features using a combination of LDA and SR (LDASR) based on a supervised feature selection and learning. Two pairs of fused radar and optical data were used in this study. Features, such as non-negative matrix factorization and textural features, were extracted from the original and bias corrected images, and, following the formation of two different types of feature matrices, the matrices were optimized based on LDASR and utilized in the two learned and unlearned forms as the inputs to rotation forest and support vector machine classifiers. The results showed that classification accuracy is greatly improved when implementing MICO-LDASR on feature matrices of Sentinel and ALOS-fused data." @default.
- W2594235617 created "2017-03-16" @default.
- W2594235617 creator A5001367815 @default.
- W2594235617 creator A5016098883 @default.
- W2594235617 creator A5027396346 @default.
- W2594235617 creator A5057794573 @default.
- W2594235617 date "2017-02-22" @default.
- W2594235617 modified "2023-10-18" @default.
- W2594235617 title "Combined algorithm for improvement of fused radar and optical data classification accuracy" @default.
- W2594235617 cites W1500895378 @default.
- W2594235617 cites W1973066300 @default.
- W2594235617 cites W1989532447 @default.
- W2594235617 cites W2004754531 @default.
- W2594235617 cites W2042047551 @default.
- W2594235617 cites W2046888627 @default.
- W2594235617 cites W2048153049 @default.
- W2594235617 cites W2049759394 @default.
- W2594235617 cites W2056930631 @default.
- W2594235617 cites W2064819030 @default.
- W2594235617 cites W2067193631 @default.
- W2594235617 cites W2076363162 @default.
- W2594235617 cites W2088586107 @default.
- W2594235617 cites W2092075602 @default.
- W2594235617 cites W2096553553 @default.
- W2594235617 cites W2100566779 @default.
- W2594235617 cites W2100860054 @default.
- W2594235617 cites W2105090634 @default.
- W2594235617 cites W2109876342 @default.
- W2594235617 cites W2115772934 @default.
- W2594235617 cites W2116919352 @default.
- W2594235617 cites W2117530999 @default.
- W2594235617 cites W2128372385 @default.
- W2594235617 cites W2128873747 @default.
- W2594235617 cites W2136748901 @default.
- W2594235617 cites W2149735013 @default.
- W2594235617 cites W2150757437 @default.
- W2594235617 cites W2157848968 @default.
- W2594235617 cites W2248623186 @default.
- W2594235617 cites W2257217404 @default.
- W2594235617 cites W2273803180 @default.
- W2594235617 cites W2288642056 @default.
- W2594235617 cites W2291529341 @default.
- W2594235617 cites W2322159772 @default.
- W2594235617 cites W2336271451 @default.
- W2594235617 cites W2558527411 @default.
- W2594235617 cites W2561602603 @default.
- W2594235617 doi "https://doi.org/10.1117/1.jei.26.1.013017" @default.
- W2594235617 hasPublicationYear "2017" @default.
- W2594235617 type Work @default.
- W2594235617 sameAs 2594235617 @default.
- W2594235617 citedByCount "10" @default.
- W2594235617 countsByYear W25942356172017 @default.
- W2594235617 countsByYear W25942356172018 @default.
- W2594235617 countsByYear W25942356172019 @default.
- W2594235617 countsByYear W25942356172020 @default.
- W2594235617 countsByYear W25942356172021 @default.
- W2594235617 countsByYear W25942356172023 @default.
- W2594235617 crossrefType "journal-article" @default.
- W2594235617 hasAuthorship W2594235617A5001367815 @default.
- W2594235617 hasAuthorship W2594235617A5016098883 @default.
- W2594235617 hasAuthorship W2594235617A5027396346 @default.
- W2594235617 hasAuthorship W2594235617A5057794573 @default.
- W2594235617 hasConcept C10929652 @default.
- W2594235617 hasConcept C110083411 @default.
- W2594235617 hasConcept C11413529 @default.
- W2594235617 hasConcept C115961682 @default.
- W2594235617 hasConcept C148483581 @default.
- W2594235617 hasConcept C153180895 @default.
- W2594235617 hasConcept C154945302 @default.
- W2594235617 hasConcept C2776135515 @default.
- W2594235617 hasConcept C41008148 @default.
- W2594235617 hasConcept C52622490 @default.
- W2594235617 hasConcept C554190296 @default.
- W2594235617 hasConcept C69738355 @default.
- W2594235617 hasConcept C75294576 @default.
- W2594235617 hasConcept C76155785 @default.
- W2594235617 hasConcept C87360688 @default.
- W2594235617 hasConcept C97931131 @default.
- W2594235617 hasConceptScore W2594235617C10929652 @default.
- W2594235617 hasConceptScore W2594235617C110083411 @default.
- W2594235617 hasConceptScore W2594235617C11413529 @default.
- W2594235617 hasConceptScore W2594235617C115961682 @default.
- W2594235617 hasConceptScore W2594235617C148483581 @default.
- W2594235617 hasConceptScore W2594235617C153180895 @default.
- W2594235617 hasConceptScore W2594235617C154945302 @default.
- W2594235617 hasConceptScore W2594235617C2776135515 @default.
- W2594235617 hasConceptScore W2594235617C41008148 @default.
- W2594235617 hasConceptScore W2594235617C52622490 @default.
- W2594235617 hasConceptScore W2594235617C554190296 @default.
- W2594235617 hasConceptScore W2594235617C69738355 @default.
- W2594235617 hasConceptScore W2594235617C75294576 @default.
- W2594235617 hasConceptScore W2594235617C76155785 @default.
- W2594235617 hasConceptScore W2594235617C87360688 @default.
- W2594235617 hasConceptScore W2594235617C97931131 @default.
- W2594235617 hasIssue "1" @default.
- W2594235617 hasLocation W25942356171 @default.
- W2594235617 hasOpenAccess W2594235617 @default.
- W2594235617 hasPrimaryLocation W25942356171 @default.