Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594254276> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2594254276 endingPage "67" @default.
- W2594254276 startingPage "59" @default.
- W2594254276 abstract "Abstract Background The adulteration of meat products with undeclared or falsely declared animal species is a major concern all over the world. There are many analytical techniques for meat species identification but are time consuming and require highly skilled personnel. Thus, rapid and robust methods are needed for meat species identification. Spectral analysis techniques are rapid tools which can be used to classify and quantify different animal species in the meat products. Chemometric is data handling tool which can analyze the complex spectral data. Scope and approach This review discusses major spectral analysis techniques suitable for meat species identification. The advantages of different data pre-processing and multivariate analysis techniques are also discussed. The spectral properties or fingerprints of the reference and analyte samples have also been summarized. Key findings and conclusions Various spectral analysis techniques have been used for meat species identification. Some studies revealed the importance of spectral analysis techniques for correct classification of different meat products according to the meat species present in them. However, there are some technical limitations of these methods, and to provide a robust solution to the meat industry, a comprehensive research should be done on these techniques with due consideration of all the limitations and process variables." @default.
- W2594254276 created "2017-03-16" @default.
- W2594254276 creator A5044715407 @default.
- W2594254276 creator A5091544523 @default.
- W2594254276 date "2017-04-01" @default.
- W2594254276 modified "2023-10-01" @default.
- W2594254276 title "Spectral analysis: A rapid tool for species detection in meat products" @default.
- W2594254276 cites W1187661429 @default.
- W2594254276 cites W1493949367 @default.
- W2594254276 cites W1562204291 @default.
- W2594254276 cites W1590722592 @default.
- W2594254276 cites W1865482992 @default.
- W2594254276 cites W1969551478 @default.
- W2594254276 cites W1978470156 @default.
- W2594254276 cites W1986406375 @default.
- W2594254276 cites W1990118221 @default.
- W2594254276 cites W1991049308 @default.
- W2594254276 cites W1991377032 @default.
- W2594254276 cites W1991413263 @default.
- W2594254276 cites W1992217230 @default.
- W2594254276 cites W2006676204 @default.
- W2594254276 cites W2008172948 @default.
- W2594254276 cites W2012358846 @default.
- W2594254276 cites W2015714270 @default.
- W2594254276 cites W2016941099 @default.
- W2594254276 cites W2017667549 @default.
- W2594254276 cites W2019795873 @default.
- W2594254276 cites W2019916133 @default.
- W2594254276 cites W2027848150 @default.
- W2594254276 cites W2035918202 @default.
- W2594254276 cites W2038326894 @default.
- W2594254276 cites W2038780961 @default.
- W2594254276 cites W2042537664 @default.
- W2594254276 cites W2046133769 @default.
- W2594254276 cites W2051762037 @default.
- W2594254276 cites W2054445903 @default.
- W2594254276 cites W2055394621 @default.
- W2594254276 cites W2057210861 @default.
- W2594254276 cites W2059210929 @default.
- W2594254276 cites W2067734878 @default.
- W2594254276 cites W2068438792 @default.
- W2594254276 cites W2070414089 @default.
- W2594254276 cites W2070615694 @default.
- W2594254276 cites W2070773807 @default.
- W2594254276 cites W2071954233 @default.
- W2594254276 cites W2089468765 @default.
- W2594254276 cites W2094714011 @default.
- W2594254276 cites W2134700792 @default.
- W2594254276 cites W2337996915 @default.
- W2594254276 cites W2344538199 @default.
- W2594254276 cites W2439534815 @default.
- W2594254276 cites W911922553 @default.
- W2594254276 doi "https://doi.org/10.1016/j.tifs.2017.02.008" @default.
- W2594254276 hasPublicationYear "2017" @default.
- W2594254276 type Work @default.
- W2594254276 sameAs 2594254276 @default.
- W2594254276 citedByCount "52" @default.
- W2594254276 countsByYear W25942542762017 @default.
- W2594254276 countsByYear W25942542762018 @default.
- W2594254276 countsByYear W25942542762019 @default.
- W2594254276 countsByYear W25942542762020 @default.
- W2594254276 countsByYear W25942542762021 @default.
- W2594254276 countsByYear W25942542762022 @default.
- W2594254276 countsByYear W25942542762023 @default.
- W2594254276 crossrefType "journal-article" @default.
- W2594254276 hasAuthorship W2594254276A5044715407 @default.
- W2594254276 hasAuthorship W2594254276A5091544523 @default.
- W2594254276 hasConcept C121332964 @default.
- W2594254276 hasConcept C2983668108 @default.
- W2594254276 hasConcept C32891209 @default.
- W2594254276 hasConcept C62520636 @default.
- W2594254276 hasConceptScore W2594254276C121332964 @default.
- W2594254276 hasConceptScore W2594254276C2983668108 @default.
- W2594254276 hasConceptScore W2594254276C32891209 @default.
- W2594254276 hasConceptScore W2594254276C62520636 @default.
- W2594254276 hasLocation W25942542761 @default.
- W2594254276 hasOpenAccess W2594254276 @default.
- W2594254276 hasPrimaryLocation W25942542761 @default.
- W2594254276 hasRelatedWork W1925423707 @default.
- W2594254276 hasRelatedWork W2024121229 @default.
- W2594254276 hasRelatedWork W2155710917 @default.
- W2594254276 hasRelatedWork W2234819782 @default.
- W2594254276 hasRelatedWork W2369857992 @default.
- W2594254276 hasRelatedWork W2376625639 @default.
- W2594254276 hasRelatedWork W2540230703 @default.
- W2594254276 hasRelatedWork W2886019038 @default.
- W2594254276 hasRelatedWork W2958913704 @default.
- W2594254276 hasRelatedWork W2183510676 @default.
- W2594254276 hasVolume "62" @default.
- W2594254276 isParatext "false" @default.
- W2594254276 isRetracted "false" @default.
- W2594254276 magId "2594254276" @default.
- W2594254276 workType "article" @default.