Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594353911> ?p ?o ?g. }
- W2594353911 abstract "Machine learning research is active in resolving issues that cope with algorithm complexity, efficiency and accuracy in a broad scope of applications, such as face recognition, optical character recognition, data mining, medical informatics and diagnosis, financial time series forecasting, intrusion detection and military applications. In the data representing many of these applications, the issues can be related to high dimensional data with small sample sizes. With large number of features in the data, irrelevant or redundant features can lead to performance degradation due to overfitting, where the predictors may specialise on features which are not relevant for discrimination. To address this, feature selection and ensemble methods have been developed and researched.In this thesis feature selection has been investigated using feature ranking methods for multiple classifier systems. Recursive Feature Elimination combined with feature ranking is an effective method of removing irrelevant features. An ensemble of Multi-Layer Perceptron (MLP) base classifiers with feature ranking based on the magnitude of MLP weights is proposed along with the extension of this ranking to ensemble pruning.Also in this thesis ensemble pruning has been investigated for regression with emphasis given to dynamic ensemble pruning as a means of improving accuracy and generalisation. Ordering heuristics attempt to combine accurate yet complementary predictors, and thereby ordering the predictors can lead to enhanced prediction accuracy and generalisation. A dynamic method is proposed that enhances the performance by modifying the order of aggregation through distributing the ensemble selection over the entire data-set. Two more dynamic methods have been proposed that implement ensemble pruning by diverse predictor selection in the learning process. The first of these two methods simultaneously prunes and trains in the same learning process, while the second method is a hybrid method that applies different learning approaches selectively. Experimental results demonstrate improved performance for dynamic ensemble pruning on benchmark data-sets and an application in signal calibration." @default.
- W2594353911 created "2017-03-16" @default.
- W2594353911 creator A5025653276 @default.
- W2594353911 date "2017-01-31" @default.
- W2594353911 modified "2023-09-23" @default.
- W2594353911 title "Dynamic and instantaneous pruning of ensemble predictors" @default.
- W2594353911 cites W131836728 @default.
- W2594353911 cites W1500698297 @default.
- W2594353911 cites W1522469894 @default.
- W2594353911 cites W1523989055 @default.
- W2594353911 cites W1526719228 @default.
- W2594353911 cites W15277881 @default.
- W2594353911 cites W1528664985 @default.
- W2594353911 cites W1540358749 @default.
- W2594353911 cites W1545155717 @default.
- W2594353911 cites W1548242015 @default.
- W2594353911 cites W1548783560 @default.
- W2594353911 cites W1548802052 @default.
- W2594353911 cites W1560107318 @default.
- W2594353911 cites W1560239279 @default.
- W2594353911 cites W1562197959 @default.
- W2594353911 cites W1567784974 @default.
- W2594353911 cites W1570448133 @default.
- W2594353911 cites W1575886444 @default.
- W2594353911 cites W1581832469 @default.
- W2594353911 cites W1583700199 @default.
- W2594353911 cites W1589768464 @default.
- W2594353911 cites W1594588104 @default.
- W2594353911 cites W1602752580 @default.
- W2594353911 cites W1608401492 @default.
- W2594353911 cites W1619226191 @default.
- W2594353911 cites W1622484071 @default.
- W2594353911 cites W1661871015 @default.
- W2594353911 cites W1676820704 @default.
- W2594353911 cites W187357405 @default.
- W2594353911 cites W189289864 @default.
- W2594353911 cites W1903531865 @default.
- W2594353911 cites W1934727243 @default.
- W2594353911 cites W1964545824 @default.
- W2594353911 cites W1980264541 @default.
- W2594353911 cites W1981399499 @default.
- W2594353911 cites W1981863521 @default.
- W2594353911 cites W1984879178 @default.
- W2594353911 cites W1991418450 @default.
- W2594353911 cites W2010830063 @default.
- W2594353911 cites W2011694392 @default.
- W2594353911 cites W2015668472 @default.
- W2594353911 cites W2017337590 @default.
- W2594353911 cites W2033773055 @default.
- W2594353911 cites W2037134354 @default.
- W2594353911 cites W2042053856 @default.
- W2594353911 cites W2050547330 @default.
- W2594353911 cites W2060477610 @default.
- W2594353911 cites W2061119986 @default.
- W2594353911 cites W2063128958 @default.
- W2594353911 cites W2065165463 @default.
- W2594353911 cites W2071128523 @default.
- W2594353911 cites W2085867967 @default.
- W2594353911 cites W2093717447 @default.
- W2594353911 cites W2096531490 @default.
- W2594353911 cites W2098515060 @default.
- W2594353911 cites W2100128988 @default.
- W2594353911 cites W2102831150 @default.
- W2594353911 cites W2103346566 @default.
- W2594353911 cites W2106390255 @default.
- W2594353911 cites W2106390385 @default.
- W2594353911 cites W2106429687 @default.
- W2594353911 cites W2107624415 @default.
- W2594353911 cites W2109094355 @default.
- W2594353911 cites W2109272893 @default.
- W2594353911 cites W2112076978 @default.
- W2594353911 cites W2113242816 @default.
- W2594353911 cites W2114449149 @default.
- W2594353911 cites W2115629999 @default.
- W2594353911 cites W2119479037 @default.
- W2594353911 cites W2121331820 @default.
- W2594353911 cites W2124951716 @default.
- W2594353911 cites W2125127226 @default.
- W2594353911 cites W2127082287 @default.
- W2594353911 cites W2130282463 @default.
- W2594353911 cites W2133045397 @default.
- W2594353911 cites W2133180260 @default.
- W2594353911 cites W2134215770 @default.
- W2594353911 cites W2135293965 @default.
- W2594353911 cites W2135346934 @default.
- W2594353911 cites W2143426320 @default.
- W2594353911 cites W2145833756 @default.
- W2594353911 cites W2145940431 @default.
- W2594353911 cites W2149048950 @default.
- W2594353911 cites W2150025428 @default.
- W2594353911 cites W2150757437 @default.
- W2594353911 cites W2156571267 @default.
- W2594353911 cites W2158275940 @default.
- W2594353911 cites W2158875652 @default.
- W2594353911 cites W2160767978 @default.
- W2594353911 cites W2164544703 @default.
- W2594353911 cites W2164726323 @default.
- W2594353911 cites W2167277498 @default.
- W2594353911 cites W2167917621 @default.
- W2594353911 cites W2295309601 @default.