Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594473083> ?p ?o ?g. }
- W2594473083 abstract "Industrial wastewater treatment from cattle slaughterhouses traditionally use dissolved air floatation (DAF) to remove the high organic content of fat, oil and grease (FOG) from wastewaters and recover them for producing other products, including tallow, gelatine and food additives. Dissolved air floatation presents several operating difficulties including the large size, high energy use and odour issues resulting in increased operation costs and decreased efficiency. Replacing a DAF unit with microfiltration or ultrafiltration membranes to recover FOG and protein could reduce operating costs and space, increase product quality through fractionation of various valuable nutrients and reduce or eliminate the smell. However, membranes have rarely been considered for such applications due to the high fouling propensity of the feed and the inability of conventional methods and membranes to effectively deal with this. One relatively unexplored fouling mitigation / cleaning technique involves electrochemistry to either prevent fouling through charge repulsion or remove fouling via electrochemical reactions. The key target of this work therefore is to investigate the suitability of conductive stainless steel membranes for filtration of a FOG / protein stream utilising electrochemical cleaning methods. In theory, in-situ membrane antifouling (the inhibition of fouling) and defouling (the removal of fouling) can be achieved by varying the applied potential on an electrochemically active and conductive membrane. Oils and organic matter tend to carry a negative charge in aqueous solutions at neutral pH and increase in negative charge density with alkali pH. For antifouling, maintaining a negative charge on a membrane surface repulses negatively charged molecules in solution, which in turn, both inhibits adsorption and/or induces them to migrate away from the electrode / membrane surface. The major finding here was that reductive potentials, at or below the hydrogen evolution reaction were successful in minimising fouling on an electrode and also succeeded in mitigating fouling by 67% in a full membrane setup. There is an ideal operating window for negative potential to achieve antifouling, enough to induce repulsion but not negative enough to initiate redox reactions at the membrane surface between -0.4 V to -1.2 V. However, to achieve the best performance antifouling probably requires constant operation at potentials negative enough to initiate the hydrogen evolution reaction or reductive desorption. The commercial implications of this are likely to be power requirements, on the order of 10W/m2. Or to put it another way, this translates to an energy requirement of 1 kWh/kL of permeate flux through the membrane, which for treating a stick water stream in typical abattoir. Defouling by contrast uses electrochemical reactions to either oxidise the organic foulants or produce gas bubbles which can lift off foulants through physical shear forces. The major finding here is that, when operated as anodic electrodes, membranes which have oxidative potentials applied, demonstrate some defouling. However, there is also polymerisation of organics into a gel layer which frequently remains attached to the membrane as well as some bulk polymerization. Further there is corrosion of the membrane surface. For reductive potential, there is an ideal operating window to achieve defouling, enough to produce hydrogen bubbles to remove fouling but not enough to initiate extensive base catalysed polymerization reactions in the bulk between -2 V to -3 V. For the full membrane setup the mitigation of fouling was not as successful as antifouling and resulted in mitigating fouling by only 3%. The membrane fouled very quickly and was unable to recover its performance effectively using electrochemical means. This suggests that long-term antifouling is a more suitable choice for effective fouling mitigation in abattoir waste water streams. This is the first known application of reactive electrochemical membranes to abattoir wastewater treatment. The ultimate aim here would be to clean the membrane without damaging the recovered products, without requiring cost inhibitive chemicals, whilst simultaneously reducing, and possibly eliminating, back washing time. Future areas of research include continuous operation under both anti-fouling and defouling protocols to see the long term impacts on both the membrane and fats, oils and proteins. It is anticipated that this study can be a worthwhile entry point for more sophisticated electrochemical engineering membrane fouling mitigation studies." @default.
- W2594473083 created "2017-03-16" @default.
- W2594473083 creator A5036801864 @default.
- W2594473083 date "2017-01-13" @default.
- W2594473083 modified "2023-09-24" @default.
- W2594473083 title "Active anti-fouling and defouling of membranes using electrochemical methods" @default.
- W2594473083 cites W1548650423 @default.
- W2594473083 cites W1553932605 @default.
- W2594473083 cites W1615977777 @default.
- W2594473083 cites W1956694005 @default.
- W2594473083 cites W1964632155 @default.
- W2594473083 cites W1966354327 @default.
- W2594473083 cites W1967696560 @default.
- W2594473083 cites W1967841799 @default.
- W2594473083 cites W1971880104 @default.
- W2594473083 cites W1971929455 @default.
- W2594473083 cites W1973089513 @default.
- W2594473083 cites W1973781490 @default.
- W2594473083 cites W1973946267 @default.
- W2594473083 cites W1975414400 @default.
- W2594473083 cites W1977303677 @default.
- W2594473083 cites W1979601135 @default.
- W2594473083 cites W1980950024 @default.
- W2594473083 cites W1985375270 @default.
- W2594473083 cites W1989758903 @default.
- W2594473083 cites W1990382907 @default.
- W2594473083 cites W1990575258 @default.
- W2594473083 cites W1992285171 @default.
- W2594473083 cites W1996975621 @default.
- W2594473083 cites W1997659575 @default.
- W2594473083 cites W1998544820 @default.
- W2594473083 cites W2000096620 @default.
- W2594473083 cites W2001700734 @default.
- W2594473083 cites W2002116424 @default.
- W2594473083 cites W2003028151 @default.
- W2594473083 cites W2005640507 @default.
- W2594473083 cites W2009705003 @default.
- W2594473083 cites W2011748296 @default.
- W2594473083 cites W2014309477 @default.
- W2594473083 cites W2014808889 @default.
- W2594473083 cites W2016739152 @default.
- W2594473083 cites W2018072089 @default.
- W2594473083 cites W2019159790 @default.
- W2594473083 cites W2022930321 @default.
- W2594473083 cites W2023105482 @default.
- W2594473083 cites W2023730105 @default.
- W2594473083 cites W2023994797 @default.
- W2594473083 cites W2026491077 @default.
- W2594473083 cites W2027868846 @default.
- W2594473083 cites W2028090957 @default.
- W2594473083 cites W2028096615 @default.
- W2594473083 cites W2029528198 @default.
- W2594473083 cites W2030791202 @default.
- W2594473083 cites W2032522277 @default.
- W2594473083 cites W2033442463 @default.
- W2594473083 cites W2033861125 @default.
- W2594473083 cites W2034790592 @default.
- W2594473083 cites W2036704454 @default.
- W2594473083 cites W2039243075 @default.
- W2594473083 cites W2040951220 @default.
- W2594473083 cites W2040986605 @default.
- W2594473083 cites W2041545141 @default.
- W2594473083 cites W2042747095 @default.
- W2594473083 cites W2043176642 @default.
- W2594473083 cites W2044099989 @default.
- W2594473083 cites W2044226967 @default.
- W2594473083 cites W2045102727 @default.
- W2594473083 cites W2047532104 @default.
- W2594473083 cites W2050597308 @default.
- W2594473083 cites W2050787136 @default.
- W2594473083 cites W2052038679 @default.
- W2594473083 cites W2052533222 @default.
- W2594473083 cites W2053044252 @default.
- W2594473083 cites W2053493041 @default.
- W2594473083 cites W2056180630 @default.
- W2594473083 cites W2057572723 @default.
- W2594473083 cites W2059388919 @default.
- W2594473083 cites W2059731959 @default.
- W2594473083 cites W2061422904 @default.
- W2594473083 cites W2062147882 @default.
- W2594473083 cites W2065590097 @default.
- W2594473083 cites W2068921391 @default.
- W2594473083 cites W2071598069 @default.
- W2594473083 cites W2073150900 @default.
- W2594473083 cites W2073236324 @default.
- W2594473083 cites W2073930077 @default.
- W2594473083 cites W2074338732 @default.
- W2594473083 cites W2075101735 @default.
- W2594473083 cites W2075238271 @default.
- W2594473083 cites W2076226702 @default.
- W2594473083 cites W2076300497 @default.
- W2594473083 cites W2077588203 @default.
- W2594473083 cites W2077892362 @default.
- W2594473083 cites W2078093940 @default.
- W2594473083 cites W2080824589 @default.
- W2594473083 cites W2081576181 @default.
- W2594473083 cites W2085622407 @default.
- W2594473083 cites W2091384805 @default.
- W2594473083 cites W2092658731 @default.
- W2594473083 cites W2093700017 @default.