Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594500194> ?p ?o ?g. }
- W2594500194 endingPage "112" @default.
- W2594500194 startingPage "98" @default.
- W2594500194 abstract "Remote sensing-based field-scale evapotranspiration (ET) maps are useful for characterizing water use patterns and assessing crop performance. The relative impact of climate variability and water management decisions are better studied and quantified using historical data that are derived using a set of consistent datasets and methodology. Historical (1984–2014) Landsat-based ET maps were generated for major irrigation districts in California, i.e., Palo Verde and eight other sub-basins in parts of the middle and lower Central Valley. A total of 3396 Landsat images were processed using the Operational Simplified Surface Energy Balance (SSEBop) model that integrates weather and remotely sensed images to estimate monthly and annual ET within the study sites over the 31 years. Model output evaluation and validation using gridded-flux data and water balance ET approaches indicated relatively good correspondence (R2 up to 0.88, root mean square error as low as 14 mm/month) between SSEBop ET and validation datasets. In a pairwise comparison, annual variability of agro-hydrologic parameters of actual evapotranspiration (ETa), land surface temperature (Ts), and runoff (Q) were found to be more variable than their corresponding climatic counterparts of atmospheric water demand (ETo), air temperature (Ta), and precipitation (P), revealing process differences between regional climatic drivers and localized agro-hydrologic responses. However, only Ta showed a consistent increase (up to 1.2 K) over study sites during the 31 years, whereas other climate variables such as ETo and P showed a generally neutral trend. This study demonstrates a useful application of “Big Data” science where large volumes of historical Landsat and weather datasets were used to quantify and understand the relative importance of water management and climate variability in crop water use dynamics in regards to the linkages among water management decisions, hydrologic processes and economic transactions. Irrigation district-wide ETa estimates were used to compute historical crop water use volumes and monetary equivalents of water savings for the Palo Verde Irrigation District (PVID). During the peak crop fallowing year in PVID, the water saved reached a maximum of ~ 107,200 acre-feet in 2011 with an estimated monetary payout value of $20.5 million. A significant decreasing trend in actual ET despite an increasing atmospheric demand in PVID highlights the role of management decisions in affecting local hydrologic processes. This study has importance for planning water resource allocation, managing water rights, sustaining agricultural production, and quantifying impacts of climate and land use/land cover changes on water resources. With increased computational efficiency, similar studies can be conducted in other parts of the world to help policy and decision makers understand and quantify various aspects of water resources management." @default.
- W2594500194 created "2017-03-16" @default.
- W2594500194 creator A5001547699 @default.
- W2594500194 creator A5017546500 @default.
- W2594500194 creator A5040062217 @default.
- W2594500194 creator A5046829320 @default.
- W2594500194 creator A5083965585 @default.
- W2594500194 date "2017-12-01" @default.
- W2594500194 modified "2023-10-05" @default.
- W2594500194 title "Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States" @default.
- W2594500194 cites W1558139511 @default.
- W2594500194 cites W1650413222 @default.
- W2594500194 cites W1964267487 @default.
- W2594500194 cites W1979723077 @default.
- W2594500194 cites W1983699843 @default.
- W2594500194 cites W1995047010 @default.
- W2594500194 cites W1997306031 @default.
- W2594500194 cites W2001747391 @default.
- W2594500194 cites W2005000384 @default.
- W2594500194 cites W2013579785 @default.
- W2594500194 cites W2019327179 @default.
- W2594500194 cites W2025745000 @default.
- W2594500194 cites W2029110225 @default.
- W2594500194 cites W2029364683 @default.
- W2594500194 cites W2038682668 @default.
- W2594500194 cites W2088081764 @default.
- W2594500194 cites W2108773011 @default.
- W2594500194 cites W2110351472 @default.
- W2594500194 cites W2111693119 @default.
- W2594500194 cites W2119130463 @default.
- W2594500194 cites W2127920964 @default.
- W2594500194 cites W2129068102 @default.
- W2594500194 cites W2131372757 @default.
- W2594500194 cites W2135685863 @default.
- W2594500194 cites W2165977355 @default.
- W2594500194 cites W2166463541 @default.
- W2594500194 cites W2167425271 @default.
- W2594500194 cites W2174485043 @default.
- W2594500194 cites W2179843978 @default.
- W2594500194 cites W2204487469 @default.
- W2594500194 cites W2233818796 @default.
- W2594500194 cites W2308510182 @default.
- W2594500194 cites W2345334408 @default.
- W2594500194 cites W4236357721 @default.
- W2594500194 cites W2006557141 @default.
- W2594500194 doi "https://doi.org/10.1016/j.rse.2017.05.005" @default.
- W2594500194 hasPublicationYear "2017" @default.
- W2594500194 type Work @default.
- W2594500194 sameAs 2594500194 @default.
- W2594500194 citedByCount "67" @default.
- W2594500194 countsByYear W25945001942017 @default.
- W2594500194 countsByYear W25945001942018 @default.
- W2594500194 countsByYear W25945001942019 @default.
- W2594500194 countsByYear W25945001942020 @default.
- W2594500194 countsByYear W25945001942021 @default.
- W2594500194 countsByYear W25945001942022 @default.
- W2594500194 countsByYear W25945001942023 @default.
- W2594500194 crossrefType "journal-article" @default.
- W2594500194 hasAuthorship W2594500194A5001547699 @default.
- W2594500194 hasAuthorship W2594500194A5017546500 @default.
- W2594500194 hasAuthorship W2594500194A5040062217 @default.
- W2594500194 hasAuthorship W2594500194A5046829320 @default.
- W2594500194 hasAuthorship W2594500194A5083965585 @default.
- W2594500194 hasBestOaLocation W25945001941 @default.
- W2594500194 hasConcept C107054158 @default.
- W2594500194 hasConcept C111368507 @default.
- W2594500194 hasConcept C127313418 @default.
- W2594500194 hasConcept C127413603 @default.
- W2594500194 hasConcept C132651083 @default.
- W2594500194 hasConcept C146978453 @default.
- W2594500194 hasConcept C153294291 @default.
- W2594500194 hasConcept C153823671 @default.
- W2594500194 hasConcept C176783924 @default.
- W2594500194 hasConcept C187320778 @default.
- W2594500194 hasConcept C18903297 @default.
- W2594500194 hasConcept C19269812 @default.
- W2594500194 hasConcept C205649164 @default.
- W2594500194 hasConcept C39432304 @default.
- W2594500194 hasConcept C49204034 @default.
- W2594500194 hasConcept C50477045 @default.
- W2594500194 hasConcept C62649853 @default.
- W2594500194 hasConcept C66465714 @default.
- W2594500194 hasConcept C76886044 @default.
- W2594500194 hasConcept C86803240 @default.
- W2594500194 hasConceptScore W2594500194C107054158 @default.
- W2594500194 hasConceptScore W2594500194C111368507 @default.
- W2594500194 hasConceptScore W2594500194C127313418 @default.
- W2594500194 hasConceptScore W2594500194C127413603 @default.
- W2594500194 hasConceptScore W2594500194C132651083 @default.
- W2594500194 hasConceptScore W2594500194C146978453 @default.
- W2594500194 hasConceptScore W2594500194C153294291 @default.
- W2594500194 hasConceptScore W2594500194C153823671 @default.
- W2594500194 hasConceptScore W2594500194C176783924 @default.
- W2594500194 hasConceptScore W2594500194C187320778 @default.
- W2594500194 hasConceptScore W2594500194C18903297 @default.
- W2594500194 hasConceptScore W2594500194C19269812 @default.
- W2594500194 hasConceptScore W2594500194C205649164 @default.
- W2594500194 hasConceptScore W2594500194C39432304 @default.