Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594579511> ?p ?o ?g. }
- W2594579511 endingPage "883" @default.
- W2594579511 startingPage "866" @default.
- W2594579511 abstract "Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, predictions and decisions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state-space models. There is no closed-form solution available for this problem, implying that we are forced to use approximations. In this tutorial we will provide a self-contained introduction to one of the state-of-the-art methods—the particle Metropolis-Hastings algorithm—which has proven to offer a practical approximation. This is a Monte Carlo based method, where the particle filter is used to guide a Markov chain Monte Carlo method through the parameter space. One of the key merits of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the “true solution” under mild assumptions, despite being based on a particle filter with only a finite number of particles. We will also provide a motivating numerical example illustrating the method using a modeling language tailored for sequential Monte Carlo methods. The intention of modeling languages of this kind is to open up the power of sophisticated Monte Carlo methods—including particle Metropolis-Hastings—to a large group of users without requiring them to know all the underlying mathematical details." @default.
- W2594579511 created "2017-03-16" @default.
- W2594579511 creator A5018960273 @default.
- W2594579511 creator A5045048407 @default.
- W2594579511 creator A5083090794 @default.
- W2594579511 creator A5087209008 @default.
- W2594579511 date "2018-05-01" @default.
- W2594579511 modified "2023-10-06" @default.
- W2594579511 title "Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo" @default.
- W2594579511 cites W1494192115 @default.
- W2594579511 cites W1576369122 @default.
- W2594579511 cites W1607933843 @default.
- W2594579511 cites W1822984620 @default.
- W2594579511 cites W1830883013 @default.
- W2594579511 cites W1860382590 @default.
- W2594579511 cites W1876120984 @default.
- W2594579511 cites W1895975266 @default.
- W2594579511 cites W2021830477 @default.
- W2594579511 cites W2022023686 @default.
- W2594579511 cites W2031294093 @default.
- W2594579511 cites W2032609070 @default.
- W2594579511 cites W2039723583 @default.
- W2594579511 cites W2055936398 @default.
- W2594579511 cites W2056760934 @default.
- W2594579511 cites W2071223490 @default.
- W2594579511 cites W2091860746 @default.
- W2594579511 cites W2095621940 @default.
- W2594579511 cites W2098613108 @default.
- W2594579511 cites W2114449404 @default.
- W2594579511 cites W2126736494 @default.
- W2594579511 cites W2130363011 @default.
- W2594579511 cites W2131598171 @default.
- W2594579511 cites W2138309709 @default.
- W2594579511 cites W2141585124 @default.
- W2594579511 cites W2147357149 @default.
- W2594579511 cites W2595744296 @default.
- W2594579511 cites W2612956293 @default.
- W2594579511 cites W2678368191 @default.
- W2594579511 cites W2919115771 @default.
- W2594579511 cites W2963779771 @default.
- W2594579511 cites W3098713583 @default.
- W2594579511 cites W3099693596 @default.
- W2594579511 cites W3103934441 @default.
- W2594579511 cites W3121793849 @default.
- W2594579511 cites W4235499294 @default.
- W2594579511 cites W4293052541 @default.
- W2594579511 doi "https://doi.org/10.1016/j.ymssp.2017.10.033" @default.
- W2594579511 hasPublicationYear "2018" @default.
- W2594579511 type Work @default.
- W2594579511 sameAs 2594579511 @default.
- W2594579511 citedByCount "25" @default.
- W2594579511 countsByYear W25945795112018 @default.
- W2594579511 countsByYear W25945795112020 @default.
- W2594579511 countsByYear W25945795112021 @default.
- W2594579511 countsByYear W25945795112022 @default.
- W2594579511 countsByYear W25945795112023 @default.
- W2594579511 crossrefType "journal-article" @default.
- W2594579511 hasAuthorship W2594579511A5018960273 @default.
- W2594579511 hasAuthorship W2594579511A5045048407 @default.
- W2594579511 hasAuthorship W2594579511A5083090794 @default.
- W2594579511 hasAuthorship W2594579511A5087209008 @default.
- W2594579511 hasBestOaLocation W25945795112 @default.
- W2594579511 hasConcept C105795698 @default.
- W2594579511 hasConcept C111350023 @default.
- W2594579511 hasConcept C11413529 @default.
- W2594579511 hasConcept C121332964 @default.
- W2594579511 hasConcept C121864883 @default.
- W2594579511 hasConcept C126255220 @default.
- W2594579511 hasConcept C13153151 @default.
- W2594579511 hasConcept C154945302 @default.
- W2594579511 hasConcept C157286648 @default.
- W2594579511 hasConcept C19499675 @default.
- W2594579511 hasConcept C204693719 @default.
- W2594579511 hasConcept C33923547 @default.
- W2594579511 hasConcept C37669827 @default.
- W2594579511 hasConcept C41008148 @default.
- W2594579511 hasConcept C49937458 @default.
- W2594579511 hasConcept C52421305 @default.
- W2594579511 hasConcept C63320529 @default.
- W2594579511 hasConcept C72434380 @default.
- W2594579511 hasConceptScore W2594579511C105795698 @default.
- W2594579511 hasConceptScore W2594579511C111350023 @default.
- W2594579511 hasConceptScore W2594579511C11413529 @default.
- W2594579511 hasConceptScore W2594579511C121332964 @default.
- W2594579511 hasConceptScore W2594579511C121864883 @default.
- W2594579511 hasConceptScore W2594579511C126255220 @default.
- W2594579511 hasConceptScore W2594579511C13153151 @default.
- W2594579511 hasConceptScore W2594579511C154945302 @default.
- W2594579511 hasConceptScore W2594579511C157286648 @default.
- W2594579511 hasConceptScore W2594579511C19499675 @default.
- W2594579511 hasConceptScore W2594579511C204693719 @default.
- W2594579511 hasConceptScore W2594579511C33923547 @default.
- W2594579511 hasConceptScore W2594579511C37669827 @default.
- W2594579511 hasConceptScore W2594579511C41008148 @default.
- W2594579511 hasConceptScore W2594579511C49937458 @default.
- W2594579511 hasConceptScore W2594579511C52421305 @default.
- W2594579511 hasConceptScore W2594579511C63320529 @default.
- W2594579511 hasConceptScore W2594579511C72434380 @default.