Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594654012> ?p ?o ?g. }
- W2594654012 endingPage "781" @default.
- W2594654012 startingPage "771" @default.
- W2594654012 abstract "Electroencephalogram (EEG) signals are frequently used in brain–computer interfaces (BCIs), but they are easily contaminated by artifacts and noise, so preprocessing must be done before they are fed into a machine learning algorithm for classification or regression. Spatial filters have been widely used to increase the signal-to-noise ratio of EEG for BCI classification problems, but their applications in BCI regression problems have been very limited. This paper proposes two common spatial pattern (CSP) filters for EEG-based regression problems in BCI, which are extended from the CSP filter for classification, by using fuzzy sets. Experimental results on EEG-based response speed estimation from a large-scale study, which collected 143 sessions of sustained-attention psychomotor vigilance task data from 17 subjects during a 5-month period, demonstrate that the two proposed spatial filters can significantly increase the EEG signal quality. When used in LASSO and $k$ -nearest neighbors regression for user response speed estimation, the spatial filters can reduce the root-mean-square estimation error by $10.02-19.77%$ , and at the same time increase the correlation to the true response speed by $19.39-86.47%$ ." @default.
- W2594654012 created "2017-03-16" @default.
- W2594654012 creator A5008740867 @default.
- W2594654012 creator A5058936239 @default.
- W2594654012 creator A5064891599 @default.
- W2594654012 creator A5074682563 @default.
- W2594654012 creator A5084246297 @default.
- W2594654012 date "2018-04-01" @default.
- W2594654012 modified "2023-10-09" @default.
- W2594654012 title "Spatial Filtering for EEG-Based Regression Problems in Brain–Computer Interface (BCI)" @default.
- W2594654012 cites W1525254066 @default.
- W2594654012 cites W1967765022 @default.
- W2594654012 cites W1971913428 @default.
- W2594654012 cites W2001051735 @default.
- W2594654012 cites W2005305331 @default.
- W2594654012 cites W2008161183 @default.
- W2594654012 cites W2008747572 @default.
- W2594654012 cites W2014538668 @default.
- W2594654012 cites W2020769260 @default.
- W2594654012 cites W2025252425 @default.
- W2594654012 cites W2034841618 @default.
- W2594654012 cites W2045561515 @default.
- W2594654012 cites W2049166497 @default.
- W2594654012 cites W2049363352 @default.
- W2594654012 cites W2056925087 @default.
- W2594654012 cites W2061554433 @default.
- W2594654012 cites W2081020044 @default.
- W2594654012 cites W2090057167 @default.
- W2594654012 cites W2099509424 @default.
- W2594654012 cites W2100535248 @default.
- W2594654012 cites W2103275652 @default.
- W2594654012 cites W2104063964 @default.
- W2594654012 cites W2105478324 @default.
- W2594654012 cites W2106822551 @default.
- W2594654012 cites W2110065044 @default.
- W2594654012 cites W2114672179 @default.
- W2594654012 cites W2123649031 @default.
- W2594654012 cites W2124433161 @default.
- W2594654012 cites W2128495200 @default.
- W2594654012 cites W2128909182 @default.
- W2594654012 cites W2134519028 @default.
- W2594654012 cites W2142280324 @default.
- W2594654012 cites W2144193901 @default.
- W2594654012 cites W2147413692 @default.
- W2594654012 cites W2147924864 @default.
- W2594654012 cites W2163756472 @default.
- W2594654012 cites W2170131944 @default.
- W2594654012 cites W2183423736 @default.
- W2594654012 cites W2294917118 @default.
- W2594654012 cites W2332007214 @default.
- W2594654012 cites W2559042111 @default.
- W2594654012 cites W2586467302 @default.
- W2594654012 cites W2964117520 @default.
- W2594654012 cites W3098943317 @default.
- W2594654012 cites W4211007335 @default.
- W2594654012 cites W4232944527 @default.
- W2594654012 cites W4237723258 @default.
- W2594654012 doi "https://doi.org/10.1109/tfuzz.2017.2688423" @default.
- W2594654012 hasPublicationYear "2018" @default.
- W2594654012 type Work @default.
- W2594654012 sameAs 2594654012 @default.
- W2594654012 citedByCount "84" @default.
- W2594654012 countsByYear W25946540122017 @default.
- W2594654012 countsByYear W25946540122018 @default.
- W2594654012 countsByYear W25946540122019 @default.
- W2594654012 countsByYear W25946540122020 @default.
- W2594654012 countsByYear W25946540122021 @default.
- W2594654012 countsByYear W25946540122022 @default.
- W2594654012 countsByYear W25946540122023 @default.
- W2594654012 crossrefType "journal-article" @default.
- W2594654012 hasAuthorship W2594654012A5008740867 @default.
- W2594654012 hasAuthorship W2594654012A5058936239 @default.
- W2594654012 hasAuthorship W2594654012A5064891599 @default.
- W2594654012 hasAuthorship W2594654012A5074682563 @default.
- W2594654012 hasAuthorship W2594654012A5084246297 @default.
- W2594654012 hasBestOaLocation W25946540122 @default.
- W2594654012 hasConcept C105795698 @default.
- W2594654012 hasConcept C113843644 @default.
- W2594654012 hasConcept C119857082 @default.
- W2594654012 hasConcept C129307140 @default.
- W2594654012 hasConcept C152877465 @default.
- W2594654012 hasConcept C153180895 @default.
- W2594654012 hasConcept C154945302 @default.
- W2594654012 hasConcept C15744967 @default.
- W2594654012 hasConcept C157915830 @default.
- W2594654012 hasConcept C169760540 @default.
- W2594654012 hasConcept C173201364 @default.
- W2594654012 hasConcept C173608175 @default.
- W2594654012 hasConcept C28490314 @default.
- W2594654012 hasConcept C33923547 @default.
- W2594654012 hasConcept C41008148 @default.
- W2594654012 hasConcept C522805319 @default.
- W2594654012 hasConcept C83546350 @default.
- W2594654012 hasConceptScore W2594654012C105795698 @default.
- W2594654012 hasConceptScore W2594654012C113843644 @default.
- W2594654012 hasConceptScore W2594654012C119857082 @default.
- W2594654012 hasConceptScore W2594654012C129307140 @default.
- W2594654012 hasConceptScore W2594654012C152877465 @default.