Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594773304> ?p ?o ?g. }
- W2594773304 endingPage "1278" @default.
- W2594773304 startingPage "1263" @default.
- W2594773304 abstract "While the routing and wavelength assignment (RWA) has been widely studied, a very few studies attempt to solve realistic size instances, namely, with 100 wavelengths per fiber and a few hundred nodes. Indeed, state of the art is closer to around 20 nodes and 30 wavelengths, regardless of what the authors consider, heuristics or exact methods with a very few exceptions. In this paper, we are interested in reducing the gap between realistic data sets and test bed instances that are often used, using exact methods. Even if exact methods may fail to solve in reasonable time very large instances, they can, however, output a-solutions with a very good and proven accuracy. The novelty of this paper is to exploit the observations that optimal solutions contain a very large number of light paths associated with shortest paths or k-shortest paths with a small k. We propose different RWA algorithms that lead to solve exactly or near exactly much larger instances than in the literature, i.e., with up to 150 wavelengths and 90 nodes. Extensive numerical experiments are conducted on both the static and dynamic incremental planning RWA problem." @default.
- W2594773304 created "2017-03-16" @default.
- W2594773304 creator A5015377900 @default.
- W2594773304 creator A5048080334 @default.
- W2594773304 date "2017-04-01" @default.
- W2594773304 modified "2023-10-18" @default.
- W2594773304 title "Efficient Spectrum Utilization in Large Scale RWA Problems" @default.
- W2594773304 cites W1653787390 @default.
- W2594773304 cites W178163080 @default.
- W2594773304 cites W1977028451 @default.
- W2594773304 cites W1984237147 @default.
- W2594773304 cites W2004385899 @default.
- W2594773304 cites W2010042481 @default.
- W2594773304 cites W2011282943 @default.
- W2594773304 cites W2031770229 @default.
- W2594773304 cites W2040740359 @default.
- W2594773304 cites W2051308394 @default.
- W2594773304 cites W2068394611 @default.
- W2594773304 cites W2091235687 @default.
- W2594773304 cites W2091341615 @default.
- W2594773304 cites W2094671554 @default.
- W2594773304 cites W2113053490 @default.
- W2594773304 cites W2113131972 @default.
- W2594773304 cites W2120192096 @default.
- W2594773304 cites W2121521262 @default.
- W2594773304 cites W2124387841 @default.
- W2594773304 cites W2126199809 @default.
- W2594773304 cites W2131058166 @default.
- W2594773304 cites W2135548986 @default.
- W2594773304 cites W2144936476 @default.
- W2594773304 cites W2147616378 @default.
- W2594773304 cites W2160545794 @default.
- W2594773304 cites W2162794843 @default.
- W2594773304 cites W2167580124 @default.
- W2594773304 cites W2273712022 @default.
- W2594773304 cites W2304370196 @default.
- W2594773304 doi "https://doi.org/10.1109/tnet.2016.2628838" @default.
- W2594773304 hasPublicationYear "2017" @default.
- W2594773304 type Work @default.
- W2594773304 sameAs 2594773304 @default.
- W2594773304 citedByCount "17" @default.
- W2594773304 countsByYear W25947733042017 @default.
- W2594773304 countsByYear W25947733042018 @default.
- W2594773304 countsByYear W25947733042019 @default.
- W2594773304 countsByYear W25947733042020 @default.
- W2594773304 countsByYear W25947733042021 @default.
- W2594773304 countsByYear W25947733042022 @default.
- W2594773304 countsByYear W25947733042023 @default.
- W2594773304 crossrefType "journal-article" @default.
- W2594773304 hasAuthorship W2594773304A5015377900 @default.
- W2594773304 hasAuthorship W2594773304A5048080334 @default.
- W2594773304 hasConcept C111919701 @default.
- W2594773304 hasConcept C11413529 @default.
- W2594773304 hasConcept C121332964 @default.
- W2594773304 hasConcept C126255220 @default.
- W2594773304 hasConcept C127705205 @default.
- W2594773304 hasConcept C138885662 @default.
- W2594773304 hasConcept C160724564 @default.
- W2594773304 hasConcept C165696696 @default.
- W2594773304 hasConcept C27206212 @default.
- W2594773304 hasConcept C2778249599 @default.
- W2594773304 hasConcept C2778738651 @default.
- W2594773304 hasConcept C31258907 @default.
- W2594773304 hasConcept C33923547 @default.
- W2594773304 hasConcept C38652104 @default.
- W2594773304 hasConcept C41008148 @default.
- W2594773304 hasConcept C49040817 @default.
- W2594773304 hasConcept C6260449 @default.
- W2594773304 hasConcept C74172769 @default.
- W2594773304 hasConceptScore W2594773304C111919701 @default.
- W2594773304 hasConceptScore W2594773304C11413529 @default.
- W2594773304 hasConceptScore W2594773304C121332964 @default.
- W2594773304 hasConceptScore W2594773304C126255220 @default.
- W2594773304 hasConceptScore W2594773304C127705205 @default.
- W2594773304 hasConceptScore W2594773304C138885662 @default.
- W2594773304 hasConceptScore W2594773304C160724564 @default.
- W2594773304 hasConceptScore W2594773304C165696696 @default.
- W2594773304 hasConceptScore W2594773304C27206212 @default.
- W2594773304 hasConceptScore W2594773304C2778249599 @default.
- W2594773304 hasConceptScore W2594773304C2778738651 @default.
- W2594773304 hasConceptScore W2594773304C31258907 @default.
- W2594773304 hasConceptScore W2594773304C33923547 @default.
- W2594773304 hasConceptScore W2594773304C38652104 @default.
- W2594773304 hasConceptScore W2594773304C41008148 @default.
- W2594773304 hasConceptScore W2594773304C49040817 @default.
- W2594773304 hasConceptScore W2594773304C6260449 @default.
- W2594773304 hasConceptScore W2594773304C74172769 @default.
- W2594773304 hasFunder F4320321588 @default.
- W2594773304 hasFunder F4320334593 @default.
- W2594773304 hasIssue "2" @default.
- W2594773304 hasLocation W25947733041 @default.
- W2594773304 hasOpenAccess W2594773304 @default.
- W2594773304 hasPrimaryLocation W25947733041 @default.
- W2594773304 hasRelatedWork W1552679454 @default.
- W2594773304 hasRelatedWork W1920399554 @default.
- W2594773304 hasRelatedWork W2035363092 @default.
- W2594773304 hasRelatedWork W2077182819 @default.
- W2594773304 hasRelatedWork W2094354888 @default.