Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594848805> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2594848805 abstract "Many disorders can be diagnosed by analysis of gene expression microarrays and this can save lots of lives. However, as gene expression data have high dimensions, establishing a method to identify the genes related to the target disease still remains a challenge, because it should provide a well-grounded prediction about the disease status. To this end, the best subset of genes should be distinguished for the classification task. In this paper, we have introduced a new framework for the analysis of gene expression data. Our proposed algorithm tries to find the best feature subset, in two main stages. First, an information theoretic forward feature selection algorithm called mRMR (minimum redundancy, maximum-relevancy) is used to find a candidate set for best features. In the next stage, the RVM (Relevance Vector Machine) classifier which is well suited for gene data analysis is utilized. The RVM has frequent privileges over other classifiers, namely, it can return a membership probability for each class that can be very vital for diagnosis of dramatic diseases, and it can also lead to a more sparse approach to fit a model over the training data which will help to avoid overfitting, etc. The Experimental results showed that the proposed algorithm outperforms the previous works in both classification accuracy and sparsity of the model." @default.
- W2594848805 created "2017-03-16" @default.
- W2594848805 creator A5006957561 @default.
- W2594848805 creator A5047633760 @default.
- W2594848805 creator A5073384956 @default.
- W2594848805 creator A5090489682 @default.
- W2594848805 date "2016-12-01" @default.
- W2594848805 modified "2023-09-25" @default.
- W2594848805 title "Combined mRMR filter and sparse Bayesian classifier for analysis of gene expression data" @default.
- W2594848805 cites W1648445109 @default.
- W2594848805 cites W1960210438 @default.
- W2594848805 cites W2006260073 @default.
- W2594848805 cites W2017337590 @default.
- W2594848805 cites W2074205728 @default.
- W2594848805 cites W2108728387 @default.
- W2594848805 cites W2109363337 @default.
- W2594848805 cites W2123737232 @default.
- W2594848805 cites W2127544153 @default.
- W2594848805 cites W2143426320 @default.
- W2594848805 cites W2153678774 @default.
- W2594848805 cites W2154053567 @default.
- W2594848805 cites W2155236584 @default.
- W2594848805 doi "https://doi.org/10.1109/icspis.2016.7869891" @default.
- W2594848805 hasPublicationYear "2016" @default.
- W2594848805 type Work @default.
- W2594848805 sameAs 2594848805 @default.
- W2594848805 citedByCount "3" @default.
- W2594848805 countsByYear W25948488052017 @default.
- W2594848805 countsByYear W25948488052018 @default.
- W2594848805 countsByYear W25948488052020 @default.
- W2594848805 crossrefType "proceedings-article" @default.
- W2594848805 hasAuthorship W2594848805A5006957561 @default.
- W2594848805 hasAuthorship W2594848805A5047633760 @default.
- W2594848805 hasAuthorship W2594848805A5073384956 @default.
- W2594848805 hasAuthorship W2594848805A5090489682 @default.
- W2594848805 hasConcept C107673813 @default.
- W2594848805 hasConcept C119857082 @default.
- W2594848805 hasConcept C12267149 @default.
- W2594848805 hasConcept C124101348 @default.
- W2594848805 hasConcept C148483581 @default.
- W2594848805 hasConcept C153180895 @default.
- W2594848805 hasConcept C154945302 @default.
- W2594848805 hasConcept C22019652 @default.
- W2594848805 hasConcept C41008148 @default.
- W2594848805 hasConcept C50644808 @default.
- W2594848805 hasConcept C52001869 @default.
- W2594848805 hasConcept C95623464 @default.
- W2594848805 hasConceptScore W2594848805C107673813 @default.
- W2594848805 hasConceptScore W2594848805C119857082 @default.
- W2594848805 hasConceptScore W2594848805C12267149 @default.
- W2594848805 hasConceptScore W2594848805C124101348 @default.
- W2594848805 hasConceptScore W2594848805C148483581 @default.
- W2594848805 hasConceptScore W2594848805C153180895 @default.
- W2594848805 hasConceptScore W2594848805C154945302 @default.
- W2594848805 hasConceptScore W2594848805C22019652 @default.
- W2594848805 hasConceptScore W2594848805C41008148 @default.
- W2594848805 hasConceptScore W2594848805C50644808 @default.
- W2594848805 hasConceptScore W2594848805C52001869 @default.
- W2594848805 hasConceptScore W2594848805C95623464 @default.
- W2594848805 hasLocation W25948488051 @default.
- W2594848805 hasOpenAccess W2594848805 @default.
- W2594848805 hasPrimaryLocation W25948488051 @default.
- W2594848805 hasRelatedWork W1538422256 @default.
- W2594848805 hasRelatedWork W1601101968 @default.
- W2594848805 hasRelatedWork W1605111328 @default.
- W2594848805 hasRelatedWork W1962406719 @default.
- W2594848805 hasRelatedWork W1969386076 @default.
- W2594848805 hasRelatedWork W1972056194 @default.
- W2594848805 hasRelatedWork W1990214975 @default.
- W2594848805 hasRelatedWork W2013734290 @default.
- W2594848805 hasRelatedWork W2095284716 @default.
- W2594848805 hasRelatedWork W2116575740 @default.
- W2594848805 hasRelatedWork W2123364414 @default.
- W2594848805 hasRelatedWork W2124426131 @default.
- W2594848805 hasRelatedWork W2158916670 @default.
- W2594848805 hasRelatedWork W2417940056 @default.
- W2594848805 hasRelatedWork W2497285991 @default.
- W2594848805 hasRelatedWork W2584786895 @default.
- W2594848805 hasRelatedWork W3112186821 @default.
- W2594848805 hasRelatedWork W58207909 @default.
- W2594848805 hasRelatedWork W940758021 @default.
- W2594848805 hasRelatedWork W1531652497 @default.
- W2594848805 isParatext "false" @default.
- W2594848805 isRetracted "false" @default.
- W2594848805 magId "2594848805" @default.
- W2594848805 workType "article" @default.