Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594869629> ?p ?o ?g. }
- W2594869629 endingPage "4400" @default.
- W2594869629 startingPage "4388" @default.
- W2594869629 abstract "The interest of indoor localization based on the IEEE 802.11 wireless local area network signal increases remarkably to support pervasive computing applications, but the process of fingerprints calibration, which is point-by-point conducted manually, is time consuming and labor intensive. To address this problem, we propose to use a novel improved semi-supervised manifold alignment approach by integrating the execution characteristic function to reduce both the number of reference points (RPs) and sampling time involved in the radio map construction. Specifically, the radio map is constructed from a small number of calibrated fingerprints and a batch of user traces, which are sporadically collected in the target environment. The user traces enable to compensate for the effort of reducing the calibration cost as well as improving the effectiveness of radio map. In addition, the cubic spline interpolation approach is applied to enrich the radio map with the limited number of RPs. Extensive experiments show that the proposed approach is capable of not only reducing the effort of fingerprints calibration remarkably, but also guaranteeing the high localization accuracy." @default.
- W2594869629 created "2017-03-16" @default.
- W2594869629 creator A5037835022 @default.
- W2594869629 creator A5040270498 @default.
- W2594869629 creator A5053350092 @default.
- W2594869629 creator A5083007002 @default.
- W2594869629 date "2017-01-01" @default.
- W2594869629 modified "2023-10-15" @default.
- W2594869629 title "Semi-Supervised Learning for Indoor Hybrid Fingerprint Database Calibration With Low Effort" @default.
- W2594869629 cites W1534413527 @default.
- W2594869629 cites W1564957501 @default.
- W2594869629 cites W1630879738 @default.
- W2594869629 cites W1772191655 @default.
- W2594869629 cites W1891938465 @default.
- W2594869629 cites W1971714892 @default.
- W2594869629 cites W1976798312 @default.
- W2594869629 cites W1978128852 @default.
- W2594869629 cites W1987209873 @default.
- W2594869629 cites W2017526794 @default.
- W2594869629 cites W2037444913 @default.
- W2594869629 cites W2038015627 @default.
- W2594869629 cites W2045636741 @default.
- W2594869629 cites W2058578387 @default.
- W2594869629 cites W2058728358 @default.
- W2594869629 cites W2095701703 @default.
- W2594869629 cites W2097308346 @default.
- W2594869629 cites W2105738738 @default.
- W2594869629 cites W2110841565 @default.
- W2594869629 cites W2111495793 @default.
- W2594869629 cites W2113971713 @default.
- W2594869629 cites W2122623239 @default.
- W2594869629 cites W2125813362 @default.
- W2594869629 cites W2143243918 @default.
- W2594869629 cites W2143399253 @default.
- W2594869629 cites W2170102584 @default.
- W2594869629 cites W2180577950 @default.
- W2594869629 cites W2182382585 @default.
- W2594869629 cites W2235922310 @default.
- W2594869629 cites W2281066146 @default.
- W2594869629 cites W2300277256 @default.
- W2594869629 cites W2332653672 @default.
- W2594869629 cites W2341033461 @default.
- W2594869629 cites W2342827161 @default.
- W2594869629 cites W2343427453 @default.
- W2594869629 cites W2395999787 @default.
- W2594869629 cites W2471663358 @default.
- W2594869629 cites W2479859684 @default.
- W2594869629 cites W2503830339 @default.
- W2594869629 cites W2514481657 @default.
- W2594869629 cites W2519387178 @default.
- W2594869629 cites W2525613883 @default.
- W2594869629 cites W2544951992 @default.
- W2594869629 cites W2549062092 @default.
- W2594869629 cites W2585584467 @default.
- W2594869629 doi "https://doi.org/10.1109/access.2017.2678603" @default.
- W2594869629 hasPublicationYear "2017" @default.
- W2594869629 type Work @default.
- W2594869629 sameAs 2594869629 @default.
- W2594869629 citedByCount "40" @default.
- W2594869629 countsByYear W25948696292017 @default.
- W2594869629 countsByYear W25948696292018 @default.
- W2594869629 countsByYear W25948696292019 @default.
- W2594869629 countsByYear W25948696292020 @default.
- W2594869629 countsByYear W25948696292021 @default.
- W2594869629 countsByYear W25948696292022 @default.
- W2594869629 countsByYear W25948696292023 @default.
- W2594869629 crossrefType "journal-article" @default.
- W2594869629 hasAuthorship W2594869629A5037835022 @default.
- W2594869629 hasAuthorship W2594869629A5040270498 @default.
- W2594869629 hasAuthorship W2594869629A5053350092 @default.
- W2594869629 hasAuthorship W2594869629A5083007002 @default.
- W2594869629 hasBestOaLocation W25948696291 @default.
- W2594869629 hasConcept C104114177 @default.
- W2594869629 hasConcept C105795698 @default.
- W2594869629 hasConcept C111919701 @default.
- W2594869629 hasConcept C124101348 @default.
- W2594869629 hasConcept C137800194 @default.
- W2594869629 hasConcept C154945302 @default.
- W2594869629 hasConcept C165838908 @default.
- W2594869629 hasConcept C168406668 @default.
- W2594869629 hasConcept C2777826928 @default.
- W2594869629 hasConcept C33923547 @default.
- W2594869629 hasConcept C41008148 @default.
- W2594869629 hasConcept C555944384 @default.
- W2594869629 hasConcept C76155785 @default.
- W2594869629 hasConcept C79403827 @default.
- W2594869629 hasConcept C98045186 @default.
- W2594869629 hasConceptScore W2594869629C104114177 @default.
- W2594869629 hasConceptScore W2594869629C105795698 @default.
- W2594869629 hasConceptScore W2594869629C111919701 @default.
- W2594869629 hasConceptScore W2594869629C124101348 @default.
- W2594869629 hasConceptScore W2594869629C137800194 @default.
- W2594869629 hasConceptScore W2594869629C154945302 @default.
- W2594869629 hasConceptScore W2594869629C165838908 @default.
- W2594869629 hasConceptScore W2594869629C168406668 @default.
- W2594869629 hasConceptScore W2594869629C2777826928 @default.
- W2594869629 hasConceptScore W2594869629C33923547 @default.
- W2594869629 hasConceptScore W2594869629C41008148 @default.