Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594917747> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2594917747 abstract "Moving magnet actuators are promising candidates for achieving nanometric motion quality over a large (10mm) motion range. Large range nanopositioning capability addresses an important instrumentation need in several areas of nanotechnology. In pursuit of this goal, we present an optimal moving magnet actuator design integrated with a double parallelogram flexure bearing and thermal management system. The proposed design is systematically optimized in the context of fundamental actuationand system-level performance tradeoffs that we have identified. The overall system is custom-fabricated and tested to validate the desired actuation performance. Preliminary closed-loop results highlight the proposed actuator’s potential for large range nanopositioning. INTRODUCTION AND MOTIVATION Large range (~ 10 mm) nanopositioning systems are becoming increasingly desirable in applications such as scanning probe microscopy, nanometrology, nanolithography, hard-drive and semiconductor inspection, and memory storage [1-2]. However, most existing nanopositioning systems are generally limited to a motion range of a few hundred microns [2-3], in part due to actuation challenges. The voice coil actuator (VCA), which is a single-phase electromagnetic actuator, has stood out among other options such as piezoelectric, inchwormtype, and multi-phase electromagnetic actuators, for its non-contact, frictionless and cog-free motion characteristics and sufficient motion range suitable for large range nanopositioning [4-5]. However, in a VCA, the non-deterministic disturbance due to the moving connecting wires and heat dissipation from the coil connected to the motion stage degrade the overall motion quality (resolution, precision and accuracy). While the operation of a moving magnet actuator (MMA) is similar to that of a VCA, its construction is different in that it employs nonmoving coils and a moving magnet. FIGURE 1 illustrates a traditional MMA configuration, featuring an axially-oriented cylindrical magnet and iron pole pieces that are connected to the motion stage of the bearing, which serve as the “mover”. The “stator” consists of a tubular backiron, along with two oppositely wound coils that are connected in series. This configuration gives MMAs two distinct advantages over the VCA: I. The non-deterministic disturbance due to the moving cables is eliminated, making MMAs truly non-contact actuators. II. Since the coils are connected to the static back-iron as opposed to the mover, the heat generated due to resistive losses in the coils remains physically separated from the motion stage. Given these attributes, MMAs are promising candidates for large range nanopositioning. The objective of this research is to systematically develop and demonstrate an optimal MMA design that takes into account I. Physical performance trade-offs, as described further below, and II. MMA-specific challenges including greater non-uniformity in force over stroke and off-axis instability of the mover [6]. PERFORMANCE TRADE-OFFS An MMA, double parallelogram flexure bearing, and thermal management system were concurrently designed to meet the following system-level performance criteria: I. Maximize the first natural frequency (or open-loop bandwidth) since this is closely related to the achievable speed and disturbance rejection of the motion system in closed-loop operation. II. Minimize the power consumption of the actuator N S" @default.
- W2594917747 created "2017-03-16" @default.
- W2594917747 creator A5013513849 @default.
- W2594917747 creator A5030443008 @default.
- W2594917747 creator A5063800558 @default.
- W2594917747 creator A5075990917 @default.
- W2594917747 date "2011-01-01" @default.
- W2594917747 modified "2023-09-26" @default.
- W2594917747 title "Design, fabrication, and testing of a moving magnet actuator for large range nanopositioning" @default.
- W2594917747 cites W142209123 @default.
- W2594917747 cites W1545941242 @default.
- W2594917747 cites W2038514957 @default.
- W2594917747 cites W2041321145 @default.
- W2594917747 cites W2063532484 @default.
- W2594917747 cites W2071765026 @default.
- W2594917747 cites W2270011170 @default.
- W2594917747 hasPublicationYear "2011" @default.
- W2594917747 type Work @default.
- W2594917747 sameAs 2594917747 @default.
- W2594917747 citedByCount "1" @default.
- W2594917747 countsByYear W25949177472012 @default.
- W2594917747 crossrefType "journal-article" @default.
- W2594917747 hasAuthorship W2594917747A5013513849 @default.
- W2594917747 hasAuthorship W2594917747A5030443008 @default.
- W2594917747 hasAuthorship W2594917747A5063800558 @default.
- W2594917747 hasAuthorship W2594917747A5075990917 @default.
- W2594917747 hasConcept C119599485 @default.
- W2594917747 hasConcept C121332964 @default.
- W2594917747 hasConcept C127413603 @default.
- W2594917747 hasConcept C145565327 @default.
- W2594917747 hasConcept C151730666 @default.
- W2594917747 hasConcept C154945302 @default.
- W2594917747 hasConcept C16389437 @default.
- W2594917747 hasConcept C172707124 @default.
- W2594917747 hasConcept C192562407 @default.
- W2594917747 hasConcept C24890656 @default.
- W2594917747 hasConcept C2779343474 @default.
- W2594917747 hasConcept C30403606 @default.
- W2594917747 hasConcept C41008148 @default.
- W2594917747 hasConcept C78519656 @default.
- W2594917747 hasConcept C86803240 @default.
- W2594917747 hasConcept C90509273 @default.
- W2594917747 hasConceptScore W2594917747C119599485 @default.
- W2594917747 hasConceptScore W2594917747C121332964 @default.
- W2594917747 hasConceptScore W2594917747C127413603 @default.
- W2594917747 hasConceptScore W2594917747C145565327 @default.
- W2594917747 hasConceptScore W2594917747C151730666 @default.
- W2594917747 hasConceptScore W2594917747C154945302 @default.
- W2594917747 hasConceptScore W2594917747C16389437 @default.
- W2594917747 hasConceptScore W2594917747C172707124 @default.
- W2594917747 hasConceptScore W2594917747C192562407 @default.
- W2594917747 hasConceptScore W2594917747C24890656 @default.
- W2594917747 hasConceptScore W2594917747C2779343474 @default.
- W2594917747 hasConceptScore W2594917747C30403606 @default.
- W2594917747 hasConceptScore W2594917747C41008148 @default.
- W2594917747 hasConceptScore W2594917747C78519656 @default.
- W2594917747 hasConceptScore W2594917747C86803240 @default.
- W2594917747 hasConceptScore W2594917747C90509273 @default.
- W2594917747 hasLocation W25949177471 @default.
- W2594917747 hasOpenAccess W2594917747 @default.
- W2594917747 hasPrimaryLocation W25949177471 @default.
- W2594917747 hasRelatedWork W1538493791 @default.
- W2594917747 hasRelatedWork W1587420641 @default.
- W2594917747 hasRelatedWork W17723438 @default.
- W2594917747 hasRelatedWork W1848534568 @default.
- W2594917747 hasRelatedWork W1975864253 @default.
- W2594917747 hasRelatedWork W1978325837 @default.
- W2594917747 hasRelatedWork W2030074420 @default.
- W2594917747 hasRelatedWork W2061496096 @default.
- W2594917747 hasRelatedWork W2066500834 @default.
- W2594917747 hasRelatedWork W2120070171 @default.
- W2594917747 hasRelatedWork W2121604789 @default.
- W2594917747 hasRelatedWork W2515546167 @default.
- W2594917747 hasRelatedWork W2522829840 @default.
- W2594917747 hasRelatedWork W2579922700 @default.
- W2594917747 hasRelatedWork W2908052009 @default.
- W2594917747 hasRelatedWork W3093619577 @default.
- W2594917747 hasRelatedWork W3136352707 @default.
- W2594917747 hasRelatedWork W944473046 @default.
- W2594917747 hasRelatedWork W1571924338 @default.
- W2594917747 hasRelatedWork W2606471819 @default.
- W2594917747 isParatext "false" @default.
- W2594917747 isRetracted "false" @default.
- W2594917747 magId "2594917747" @default.
- W2594917747 workType "article" @default.