Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594921714> ?p ?o ?g. }
- W2594921714 endingPage "328" @default.
- W2594921714 startingPage "311" @default.
- W2594921714 abstract "In a 1967 paper, Banchoff stated that a certain type of polyhedral curvature, that applies to all finite polyhedra, was zero at all vertices of an odd-dimensional polyhedral manifold; one then obtains an elementary proof that odd-dimensional manifolds have zero Euler characteristic. In a previous paper, the author defined a different approach to curvature for arbitrary simplicial complexes, based upon a direct generalization of the angle defect. The generalized angle defect is not zero at the simplices of every odd-dimensional manifold. In this paper we use a sequence based upon the Bernoulli numbers to define a variant of the angle defect for finite simplicial complexes that still satisfies a Gauss-Bonnet-type theorem, but is also zero at any simplex of an odd-dimensional simplicial complex K (of dimension at least 3), such that χ(link(ηi, K)) = 2 for all i-simplices ηi of K, where i is an even integer such that 0 ≤ i ≤ n – 1. As a corollary, an elementary proof is given that any such simplicial complex has Euler characteristic zero." @default.
- W2594921714 created "2017-03-16" @default.
- W2594921714 creator A5035398167 @default.
- W2594921714 date "2005-12-30" @default.
- W2594921714 modified "2023-09-25" @default.
- W2594921714 title "The Angle Defect for Odd-Dimensional Simplicial Manifolds" @default.
- W2594921714 cites W120618969 @default.
- W2594921714 cites W1481113074 @default.
- W2594921714 cites W1496383623 @default.
- W2594921714 cites W1548333856 @default.
- W2594921714 cites W1582790890 @default.
- W2594921714 cites W1805871248 @default.
- W2594921714 cites W1817924429 @default.
- W2594921714 cites W1968533856 @default.
- W2594921714 cites W1980340889 @default.
- W2594921714 cites W1988217445 @default.
- W2594921714 cites W1991050933 @default.
- W2594921714 cites W1993588229 @default.
- W2594921714 cites W1996160600 @default.
- W2594921714 cites W2011182088 @default.
- W2594921714 cites W2015528458 @default.
- W2594921714 cites W2017128277 @default.
- W2594921714 cites W2020891414 @default.
- W2594921714 cites W2028046367 @default.
- W2594921714 cites W2041186059 @default.
- W2594921714 cites W2045729188 @default.
- W2594921714 cites W2058796460 @default.
- W2594921714 cites W2071657396 @default.
- W2594921714 cites W2095487469 @default.
- W2594921714 cites W2102702648 @default.
- W2594921714 cites W2126209209 @default.
- W2594921714 cites W2161857886 @default.
- W2594921714 cites W2211120984 @default.
- W2594921714 cites W2325089592 @default.
- W2594921714 cites W2332275131 @default.
- W2594921714 cites W2506214406 @default.
- W2594921714 cites W2801179766 @default.
- W2594921714 doi "https://doi.org/10.1007/s00454-005-1221-z" @default.
- W2594921714 hasPublicationYear "2005" @default.
- W2594921714 type Work @default.
- W2594921714 sameAs 2594921714 @default.
- W2594921714 citedByCount "2" @default.
- W2594921714 countsByYear W25949217142016 @default.
- W2594921714 crossrefType "journal-article" @default.
- W2594921714 hasAuthorship W2594921714A5035398167 @default.
- W2594921714 hasBestOaLocation W25949217141 @default.
- W2594921714 hasConcept C114614502 @default.
- W2594921714 hasConcept C127413603 @default.
- W2594921714 hasConcept C129621563 @default.
- W2594921714 hasConcept C134306372 @default.
- W2594921714 hasConcept C138885662 @default.
- W2594921714 hasConcept C146867743 @default.
- W2594921714 hasConcept C155366967 @default.
- W2594921714 hasConcept C187929450 @default.
- W2594921714 hasConcept C18903297 @default.
- W2594921714 hasConcept C195065555 @default.
- W2594921714 hasConcept C196433757 @default.
- W2594921714 hasConcept C202444582 @default.
- W2594921714 hasConcept C2524010 @default.
- W2594921714 hasConcept C2777299769 @default.
- W2594921714 hasConcept C2780813799 @default.
- W2594921714 hasConcept C33923547 @default.
- W2594921714 hasConcept C3469331 @default.
- W2594921714 hasConcept C41895202 @default.
- W2594921714 hasConcept C529865628 @default.
- W2594921714 hasConcept C54829058 @default.
- W2594921714 hasConcept C5961521 @default.
- W2594921714 hasConcept C62438384 @default.
- W2594921714 hasConcept C62884695 @default.
- W2594921714 hasConcept C64245159 @default.
- W2594921714 hasConcept C78519656 @default.
- W2594921714 hasConcept C79236096 @default.
- W2594921714 hasConcept C86803240 @default.
- W2594921714 hasConcept C97172818 @default.
- W2594921714 hasConceptScore W2594921714C114614502 @default.
- W2594921714 hasConceptScore W2594921714C127413603 @default.
- W2594921714 hasConceptScore W2594921714C129621563 @default.
- W2594921714 hasConceptScore W2594921714C134306372 @default.
- W2594921714 hasConceptScore W2594921714C138885662 @default.
- W2594921714 hasConceptScore W2594921714C146867743 @default.
- W2594921714 hasConceptScore W2594921714C155366967 @default.
- W2594921714 hasConceptScore W2594921714C187929450 @default.
- W2594921714 hasConceptScore W2594921714C18903297 @default.
- W2594921714 hasConceptScore W2594921714C195065555 @default.
- W2594921714 hasConceptScore W2594921714C196433757 @default.
- W2594921714 hasConceptScore W2594921714C202444582 @default.
- W2594921714 hasConceptScore W2594921714C2524010 @default.
- W2594921714 hasConceptScore W2594921714C2777299769 @default.
- W2594921714 hasConceptScore W2594921714C2780813799 @default.
- W2594921714 hasConceptScore W2594921714C33923547 @default.
- W2594921714 hasConceptScore W2594921714C3469331 @default.
- W2594921714 hasConceptScore W2594921714C41895202 @default.
- W2594921714 hasConceptScore W2594921714C529865628 @default.
- W2594921714 hasConceptScore W2594921714C54829058 @default.
- W2594921714 hasConceptScore W2594921714C5961521 @default.
- W2594921714 hasConceptScore W2594921714C62438384 @default.
- W2594921714 hasConceptScore W2594921714C62884695 @default.
- W2594921714 hasConceptScore W2594921714C64245159 @default.