Matches in SemOpenAlex for { <https://semopenalex.org/work/W2594967417> ?p ?o ?g. }
- W2594967417 endingPage "207" @default.
- W2594967417 startingPage "199" @default.
- W2594967417 abstract "Compressive strength of concrete is one the parameters required in many design codes. A reliable prediction of it can save in time and cost by quickly generating the needed design data. In addition, it can reduce the material waste by reducing the number of trial mixes. In this study, M5P model tree algorithm was used to predict the compressive strength of normal concrete (NC) and high performance concrete (HPC). Compared to other soft computing methods, model trees are able to offer two main advantages: (a) they are able to provide mathematical equations and offer more insight into the obtained equations and (b) they are more convenient to develop and implement. To develop the model tree, a total of 1912 distinctive data records were collected from internationally published literature. Overall, the results show that M5P model tree can be a better alternative approach for prediction of the compressive strength of NC and HPC using the amount of constituents of concrete as input parameters." @default.
- W2594967417 created "2017-03-23" @default.
- W2594967417 creator A5053215077 @default.
- W2594967417 creator A5059005235 @default.
- W2594967417 creator A5067149817 @default.
- W2594967417 creator A5081500824 @default.
- W2594967417 date "2017-07-01" @default.
- W2594967417 modified "2023-10-18" @default.
- W2594967417 title "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm" @default.
- W2594967417 cites W1145034317 @default.
- W2594967417 cites W1592968810 @default.
- W2594967417 cites W1752416898 @default.
- W2594967417 cites W1967366211 @default.
- W2594967417 cites W1979721602 @default.
- W2594967417 cites W1982898551 @default.
- W2594967417 cites W1983735453 @default.
- W2594967417 cites W1989119078 @default.
- W2594967417 cites W2009310525 @default.
- W2594967417 cites W2022525371 @default.
- W2594967417 cites W2022695033 @default.
- W2594967417 cites W2024404845 @default.
- W2594967417 cites W2032962877 @default.
- W2594967417 cites W2035864983 @default.
- W2594967417 cites W2036718868 @default.
- W2594967417 cites W2038808304 @default.
- W2594967417 cites W2052757243 @default.
- W2594967417 cites W2053164686 @default.
- W2594967417 cites W2054557393 @default.
- W2594967417 cites W2061933243 @default.
- W2594967417 cites W2073093937 @default.
- W2594967417 cites W2080406748 @default.
- W2594967417 cites W2085888225 @default.
- W2594967417 cites W2086832245 @default.
- W2594967417 cites W2087544418 @default.
- W2594967417 cites W2096185550 @default.
- W2594967417 cites W2113622890 @default.
- W2594967417 cites W2125311159 @default.
- W2594967417 cites W2134031917 @default.
- W2594967417 cites W2139010955 @default.
- W2594967417 cites W2144494611 @default.
- W2594967417 cites W2154631075 @default.
- W2594967417 cites W2164888938 @default.
- W2594967417 cites W2217122718 @default.
- W2594967417 cites W2223491879 @default.
- W2594967417 cites W2240074784 @default.
- W2594967417 cites W2315719139 @default.
- W2594967417 cites W2338443192 @default.
- W2594967417 cites W2464217739 @default.
- W2594967417 cites W2505119530 @default.
- W2594967417 cites W2523984406 @default.
- W2594967417 cites W2531609272 @default.
- W2594967417 cites W2556448491 @default.
- W2594967417 cites W843278983 @default.
- W2594967417 doi "https://doi.org/10.1016/j.conbuildmat.2017.03.061" @default.
- W2594967417 hasPublicationYear "2017" @default.
- W2594967417 type Work @default.
- W2594967417 sameAs 2594967417 @default.
- W2594967417 citedByCount "193" @default.
- W2594967417 countsByYear W25949674172017 @default.
- W2594967417 countsByYear W25949674172018 @default.
- W2594967417 countsByYear W25949674172019 @default.
- W2594967417 countsByYear W25949674172020 @default.
- W2594967417 countsByYear W25949674172021 @default.
- W2594967417 countsByYear W25949674172022 @default.
- W2594967417 countsByYear W25949674172023 @default.
- W2594967417 crossrefType "journal-article" @default.
- W2594967417 hasAuthorship W2594967417A5053215077 @default.
- W2594967417 hasAuthorship W2594967417A5059005235 @default.
- W2594967417 hasAuthorship W2594967417A5067149817 @default.
- W2594967417 hasAuthorship W2594967417A5081500824 @default.
- W2594967417 hasConcept C113174947 @default.
- W2594967417 hasConcept C11413529 @default.
- W2594967417 hasConcept C124101348 @default.
- W2594967417 hasConcept C127413603 @default.
- W2594967417 hasConcept C134306372 @default.
- W2594967417 hasConcept C159985019 @default.
- W2594967417 hasConcept C192562407 @default.
- W2594967417 hasConcept C2777115002 @default.
- W2594967417 hasConcept C30407753 @default.
- W2594967417 hasConcept C33923547 @default.
- W2594967417 hasConcept C41008148 @default.
- W2594967417 hasConcept C44154836 @default.
- W2594967417 hasConcept C66938386 @default.
- W2594967417 hasConceptScore W2594967417C113174947 @default.
- W2594967417 hasConceptScore W2594967417C11413529 @default.
- W2594967417 hasConceptScore W2594967417C124101348 @default.
- W2594967417 hasConceptScore W2594967417C127413603 @default.
- W2594967417 hasConceptScore W2594967417C134306372 @default.
- W2594967417 hasConceptScore W2594967417C159985019 @default.
- W2594967417 hasConceptScore W2594967417C192562407 @default.
- W2594967417 hasConceptScore W2594967417C2777115002 @default.
- W2594967417 hasConceptScore W2594967417C30407753 @default.
- W2594967417 hasConceptScore W2594967417C33923547 @default.
- W2594967417 hasConceptScore W2594967417C41008148 @default.
- W2594967417 hasConceptScore W2594967417C44154836 @default.
- W2594967417 hasConceptScore W2594967417C66938386 @default.
- W2594967417 hasLocation W25949674171 @default.
- W2594967417 hasOpenAccess W2594967417 @default.