Matches in SemOpenAlex for { <https://semopenalex.org/work/W2595324319> ?p ?o ?g. }
- W2595324319 endingPage "e01723" @default.
- W2595324319 startingPage "e01723" @default.
- W2595324319 abstract "Invasive species continue to pose major challenges for managing coupled human–environmental systems. Predictive tools are essential to maximize invasion monitoring and conservation efforts in regions reliant on abundant freshwater resources to sustain economic welfare, social equity, and ecological services. Past studies have revealed biotic and abiotic heterogeneity, along with human activity, can account for much of the spatial variability of aquatic invaders; however, improvements remain. This study was created to (1) examine the distribution of aquatic invasive species richness (AISR) across 126 lakes in the Adirondack Region of New York; (2) develop and compare global and local models between lake and landscape characteristics and AISR; and (3) use geographically weighted regression (GWR) to evaluate non-stationarity of local relationships, and assess its use for prioritizing lakes at risk to invasion. The evaluation index, AISR, was calculated by summing the following potential aquatic invaders for each lake: Asian Clam (Corbicula fluminea), Brittle Naiad (Najas minor), Curly-leaf Pondweed (Potamogeton crispus), Eurasian Watermilfoil (Myriophyllum spicatum), European Frog-bit (Hydrocharis morsus-ranae), Fanwort (Cabomba caroliniana), Spiny Waterflea (Bythotrephes longimanus), Variable-leaf Milfoil (Myriophyllum heterophyllum), Water Chestnut (Trapa natans), Yellow Floating Heart (Nymphoides peltata), and Zebra Mussel (Dreissena polymorpha). The Getis-Ord Gi* statistic displayed significant spatial hot and cold spots of AISR across Adirondack lakes. Spearman's rank (ρ) correlation coefficient test (rs) revealed urban land cover composition, lake elevation, relative patch richness, and abundance of game fish were the strongest predictors of aquatic invasion. Five multiple regression global Poisson and GWR models were made, with GWR fitting AISR very well (R2 = 76–83%). Local pseudo-t-statistics of key explanatory variables were mapped and related to AISR, confirming the importance of GWR for understanding spatial relationships of invasion. The top 20 lakes at risk to future invasion were identified and ranked by summing the five GWR predictive estimates. The results inform that inexpensive and publicly accessible lake and landscape data, typically available from digital repositories within local environmental agencies, can be used to develop predictions of aquatic invasion with remarkable agreement. Ultimately, this transferable modeling approach can improve monitoring and management strategies for slowing the spread of invading species." @default.
- W2595324319 created "2017-03-23" @default.
- W2595324319 creator A5018246050 @default.
- W2595324319 creator A5046091057 @default.
- W2595324319 creator A5050953799 @default.
- W2595324319 creator A5055076378 @default.
- W2595324319 creator A5063915498 @default.
- W2595324319 creator A5079873407 @default.
- W2595324319 date "2017-03-01" @default.
- W2595324319 modified "2023-10-16" @default.
- W2595324319 title "Predicting aquatic invasion in Adirondack lakes: a spatial analysis of lake and landscape characteristics" @default.
- W2595324319 cites W1500312118 @default.
- W2595324319 cites W1890679020 @default.
- W2595324319 cites W1943630578 @default.
- W2595324319 cites W1969983945 @default.
- W2595324319 cites W1970777324 @default.
- W2595324319 cites W1973749534 @default.
- W2595324319 cites W1974326963 @default.
- W2595324319 cites W1976760258 @default.
- W2595324319 cites W1983534546 @default.
- W2595324319 cites W1991691903 @default.
- W2595324319 cites W1998734830 @default.
- W2595324319 cites W1999403187 @default.
- W2595324319 cites W2010265258 @default.
- W2595324319 cites W2010365184 @default.
- W2595324319 cites W2012745138 @default.
- W2595324319 cites W2028040416 @default.
- W2595324319 cites W2029269653 @default.
- W2595324319 cites W2032611734 @default.
- W2595324319 cites W2039039436 @default.
- W2595324319 cites W2041451589 @default.
- W2595324319 cites W2044445511 @default.
- W2595324319 cites W2052611179 @default.
- W2595324319 cites W2052958277 @default.
- W2595324319 cites W2056419142 @default.
- W2595324319 cites W2060278391 @default.
- W2595324319 cites W2062171437 @default.
- W2595324319 cites W2065783703 @default.
- W2595324319 cites W2071931002 @default.
- W2595324319 cites W2083360347 @default.
- W2595324319 cites W2085333643 @default.
- W2595324319 cites W2102128253 @default.
- W2595324319 cites W2102417376 @default.
- W2595324319 cites W2105882646 @default.
- W2595324319 cites W2109152206 @default.
- W2595324319 cites W2114093436 @default.
- W2595324319 cites W2114961240 @default.
- W2595324319 cites W2118905110 @default.
- W2595324319 cites W2123467490 @default.
- W2595324319 cites W2131586477 @default.
- W2595324319 cites W2144356599 @default.
- W2595324319 cites W2144745759 @default.
- W2595324319 cites W2145202056 @default.
- W2595324319 cites W2145626030 @default.
- W2595324319 cites W2146942999 @default.
- W2595324319 cites W2148298021 @default.
- W2595324319 cites W2153423966 @default.
- W2595324319 cites W2153820558 @default.
- W2595324319 cites W2161559117 @default.
- W2595324319 cites W2164198761 @default.
- W2595324319 cites W2166329490 @default.
- W2595324319 cites W2170121306 @default.
- W2595324319 cites W2170565777 @default.
- W2595324319 cites W4230211598 @default.
- W2595324319 cites W4253290451 @default.
- W2595324319 cites W934312643 @default.
- W2595324319 doi "https://doi.org/10.1002/ecs2.1723" @default.
- W2595324319 hasPublicationYear "2017" @default.
- W2595324319 type Work @default.
- W2595324319 sameAs 2595324319 @default.
- W2595324319 citedByCount "11" @default.
- W2595324319 countsByYear W25953243192017 @default.
- W2595324319 countsByYear W25953243192018 @default.
- W2595324319 countsByYear W25953243192019 @default.
- W2595324319 countsByYear W25953243192020 @default.
- W2595324319 countsByYear W25953243192021 @default.
- W2595324319 countsByYear W25953243192022 @default.
- W2595324319 crossrefType "journal-article" @default.
- W2595324319 hasAuthorship W2595324319A5018246050 @default.
- W2595324319 hasAuthorship W2595324319A5046091057 @default.
- W2595324319 hasAuthorship W2595324319A5050953799 @default.
- W2595324319 hasAuthorship W2595324319A5055076378 @default.
- W2595324319 hasAuthorship W2595324319A5063915498 @default.
- W2595324319 hasAuthorship W2595324319A5079873407 @default.
- W2595324319 hasBestOaLocation W25953243191 @default.
- W2595324319 hasConcept C132000320 @default.
- W2595324319 hasConcept C136020623 @default.
- W2595324319 hasConcept C173651095 @default.
- W2595324319 hasConcept C185933670 @default.
- W2595324319 hasConcept C18903297 @default.
- W2595324319 hasConcept C2776249982 @default.
- W2595324319 hasConcept C2776846509 @default.
- W2595324319 hasConcept C2777158103 @default.
- W2595324319 hasConcept C2779492349 @default.
- W2595324319 hasConcept C2779586492 @default.
- W2595324319 hasConcept C2779987062 @default.
- W2595324319 hasConcept C2780312144 @default.
- W2595324319 hasConcept C34771814 @default.