Matches in SemOpenAlex for { <https://semopenalex.org/work/W2595599881> ?p ?o ?g. }
- W2595599881 endingPage "974" @default.
- W2595599881 startingPage "939" @default.
- W2595599881 abstract "In this work, we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example, we calibrate the model against experimental data that are subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model." @default.
- W2595599881 created "2017-03-23" @default.
- W2595599881 creator A5023817280 @default.
- W2595599881 creator A5023976539 @default.
- W2595599881 creator A5034856451 @default.
- W2595599881 creator A5081431968 @default.
- W2595599881 creator A5083546977 @default.
- W2595599881 creator A5086781368 @default.
- W2595599881 creator A5087448925 @default.
- W2595599881 date "2017-03-13" @default.
- W2595599881 modified "2023-10-17" @default.
- W2595599881 title "Bayesian Calibration, Validation and Uncertainty Quantification for Predictive Modelling of Tumour Growth: A Tutorial" @default.
- W2595599881 cites W1512208174 @default.
- W2595599881 cites W1538934584 @default.
- W2595599881 cites W1607663648 @default.
- W2595599881 cites W1881146567 @default.
- W2595599881 cites W1965555277 @default.
- W2595599881 cites W1973333099 @default.
- W2595599881 cites W1974076274 @default.
- W2595599881 cites W1982048786 @default.
- W2595599881 cites W1982421072 @default.
- W2595599881 cites W1983156129 @default.
- W2595599881 cites W1984769553 @default.
- W2595599881 cites W1986775347 @default.
- W2595599881 cites W1987043741 @default.
- W2595599881 cites W1999245030 @default.
- W2595599881 cites W2009552816 @default.
- W2595599881 cites W2018669757 @default.
- W2595599881 cites W2019770387 @default.
- W2595599881 cites W2027319489 @default.
- W2595599881 cites W2028685719 @default.
- W2595599881 cites W2051203581 @default.
- W2595599881 cites W2055460625 @default.
- W2595599881 cites W2055498672 @default.
- W2595599881 cites W2056760934 @default.
- W2595599881 cites W2057765075 @default.
- W2595599881 cites W2058899256 @default.
- W2595599881 cites W2062412917 @default.
- W2595599881 cites W2081084899 @default.
- W2595599881 cites W2083845086 @default.
- W2595599881 cites W2086077633 @default.
- W2595599881 cites W2096045991 @default.
- W2595599881 cites W2107224931 @default.
- W2595599881 cites W2108001913 @default.
- W2595599881 cites W2113517083 @default.
- W2595599881 cites W2127951107 @default.
- W2595599881 cites W2130902307 @default.
- W2595599881 cites W2132504853 @default.
- W2595599881 cites W2135973421 @default.
- W2595599881 cites W2136602340 @default.
- W2595599881 cites W2138309709 @default.
- W2595599881 cites W2140951396 @default.
- W2595599881 cites W2141431463 @default.
- W2595599881 cites W2143591652 @default.
- W2595599881 cites W2161543607 @default.
- W2595599881 cites W2168648059 @default.
- W2595599881 cites W3104887532 @default.
- W2595599881 cites W4255375128 @default.
- W2595599881 cites W2032413258 @default.
- W2595599881 doi "https://doi.org/10.1007/s11538-017-0258-5" @default.
- W2595599881 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28290010" @default.
- W2595599881 hasPublicationYear "2017" @default.
- W2595599881 type Work @default.
- W2595599881 sameAs 2595599881 @default.
- W2595599881 citedByCount "36" @default.
- W2595599881 countsByYear W25955998812017 @default.
- W2595599881 countsByYear W25955998812018 @default.
- W2595599881 countsByYear W25955998812019 @default.
- W2595599881 countsByYear W25955998812020 @default.
- W2595599881 countsByYear W25955998812021 @default.
- W2595599881 countsByYear W25955998812022 @default.
- W2595599881 countsByYear W25955998812023 @default.
- W2595599881 crossrefType "journal-article" @default.
- W2595599881 hasAuthorship W2595599881A5023817280 @default.
- W2595599881 hasAuthorship W2595599881A5023976539 @default.
- W2595599881 hasAuthorship W2595599881A5034856451 @default.
- W2595599881 hasAuthorship W2595599881A5081431968 @default.
- W2595599881 hasAuthorship W2595599881A5083546977 @default.
- W2595599881 hasAuthorship W2595599881A5086781368 @default.
- W2595599881 hasAuthorship W2595599881A5087448925 @default.
- W2595599881 hasBestOaLocation W25955998812 @default.
- W2595599881 hasConcept C105795698 @default.
- W2595599881 hasConcept C107673813 @default.
- W2595599881 hasConcept C111472728 @default.
- W2595599881 hasConcept C119857082 @default.
- W2595599881 hasConcept C124101348 @default.
- W2595599881 hasConcept C127413603 @default.
- W2595599881 hasConcept C138885662 @default.
- W2595599881 hasConcept C151730666 @default.
- W2595599881 hasConcept C154945302 @default.
- W2595599881 hasConcept C165838908 @default.
- W2595599881 hasConcept C202444582 @default.
- W2595599881 hasConcept C21200559 @default.
- W2595599881 hasConcept C24326235 @default.
- W2595599881 hasConcept C2522767166 @default.
- W2595599881 hasConcept C2779343474 @default.
- W2595599881 hasConcept C2780586882 @default.
- W2595599881 hasConcept C3019813237 @default.