Matches in SemOpenAlex for { <https://semopenalex.org/work/W2595906269> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2595906269 abstract "Adult Spinal Deformity is a prominent medical issue with about 68% of the elderly population suffering from the disease.1 Detailed biomechanical assessment is needed both in the presurgical planning of structural spinal deformity as well as in early functional biomechanical compensation in ambulatory spinal pain patients. When considering automation of this process, we have to look at photographic intervertebral disc detection technique as a way to produce a detailed model of the spine with appropriate measurements required to make efficient and accurate decisions on patient care. Deep convolutional neural network (CNN) has given remarkable results in object recognition tasks in recent years. However, massive training data, computational resources and long training time is needed for both training a deep network from scratch or finetuning a network. Using pretrained model as feature extractor has shown promising result for moderate sized medical data.2 However, most work have extracted features from the last layer and little has been explored in terms of the number of convolutional layers needed for best performance. In this work we trained Support Vector Machine (SVM) classifiers on different layers of CaffeNet3 features to show that deeper the better concept does not hold for task such as intervertebral disc detection. Furthermore, our experimental results show the potential of using very small training data, such as 15 annotated medical images in our experiment, to yield satisfactory classification performance with accuracy up to 97.2%." @default.
- W2595906269 created "2017-03-23" @default.
- W2595906269 creator A5004523290 @default.
- W2595906269 creator A5017000249 @default.
- W2595906269 creator A5038541756 @default.
- W2595906269 creator A5091583776 @default.
- W2595906269 date "2017-03-13" @default.
- W2595906269 modified "2023-10-16" @default.
- W2595906269 title "Towards an affordable deep learning system: automated intervertebral disc detection in x-ray images" @default.
- W2595906269 cites W2027788451 @default.
- W2595906269 cites W2073499336 @default.
- W2595906269 cites W2117539524 @default.
- W2595906269 cites W2135661153 @default.
- W2595906269 cites W2346062110 @default.
- W2595906269 doi "https://doi.org/10.1117/12.2254692" @default.
- W2595906269 hasPublicationYear "2017" @default.
- W2595906269 type Work @default.
- W2595906269 sameAs 2595906269 @default.
- W2595906269 citedByCount "0" @default.
- W2595906269 crossrefType "proceedings-article" @default.
- W2595906269 hasAuthorship W2595906269A5004523290 @default.
- W2595906269 hasAuthorship W2595906269A5017000249 @default.
- W2595906269 hasAuthorship W2595906269A5038541756 @default.
- W2595906269 hasAuthorship W2595906269A5091583776 @default.
- W2595906269 hasConcept C108583219 @default.
- W2595906269 hasConcept C119857082 @default.
- W2595906269 hasConcept C12267149 @default.
- W2595906269 hasConcept C153180895 @default.
- W2595906269 hasConcept C154945302 @default.
- W2595906269 hasConcept C31972630 @default.
- W2595906269 hasConcept C41008148 @default.
- W2595906269 hasConcept C81363708 @default.
- W2595906269 hasConceptScore W2595906269C108583219 @default.
- W2595906269 hasConceptScore W2595906269C119857082 @default.
- W2595906269 hasConceptScore W2595906269C12267149 @default.
- W2595906269 hasConceptScore W2595906269C153180895 @default.
- W2595906269 hasConceptScore W2595906269C154945302 @default.
- W2595906269 hasConceptScore W2595906269C31972630 @default.
- W2595906269 hasConceptScore W2595906269C41008148 @default.
- W2595906269 hasConceptScore W2595906269C81363708 @default.
- W2595906269 hasLocation W25959062691 @default.
- W2595906269 hasOpenAccess W2595906269 @default.
- W2595906269 hasPrimaryLocation W25959062691 @default.
- W2595906269 hasRelatedWork W2522594226 @default.
- W2595906269 hasRelatedWork W2738627448 @default.
- W2595906269 hasRelatedWork W2790338823 @default.
- W2595906269 hasRelatedWork W2888443510 @default.
- W2595906269 hasRelatedWork W2900400240 @default.
- W2595906269 hasRelatedWork W2965889308 @default.
- W2595906269 hasRelatedWork W3003602108 @default.
- W2595906269 hasRelatedWork W3003655709 @default.
- W2595906269 hasRelatedWork W3004019936 @default.
- W2595906269 hasRelatedWork W3012365277 @default.
- W2595906269 hasRelatedWork W3021465196 @default.
- W2595906269 hasRelatedWork W3041993914 @default.
- W2595906269 hasRelatedWork W3100949670 @default.
- W2595906269 hasRelatedWork W3102814955 @default.
- W2595906269 hasRelatedWork W3115255683 @default.
- W2595906269 hasRelatedWork W3116055023 @default.
- W2595906269 hasRelatedWork W3119503899 @default.
- W2595906269 hasRelatedWork W3134300140 @default.
- W2595906269 hasRelatedWork W3142870706 @default.
- W2595906269 hasRelatedWork W3178390372 @default.
- W2595906269 isParatext "false" @default.
- W2595906269 isRetracted "false" @default.
- W2595906269 magId "2595906269" @default.
- W2595906269 workType "article" @default.