Matches in SemOpenAlex for { <https://semopenalex.org/work/W2596001244> ?p ?o ?g. }
- W2596001244 abstract "Given a piece of music, the timing of each beat varies from performer to performer. The study of these small differences is known as expressive timing analysis. Research into expressive timing helps us to understand human perception of music and the production of enjoyable music. Classical piano music is one music style where it is possible to measure expressive timing and hence provides a promising candidate for expressive timing analysis. Various techniques have been used for expressive timing analysis, such as the Self-Organising Map (SOM), parabolic regression and Bayesian models. However, there has been little investigation into whether these methods are in fact suitable for expressive timing analysis and how the parameters in these methods should be selected. For example, there is a lack of formal demonstration that whether the expressive timing within a phrase can be clustered and how many clusters are there for expressive timing in performed music. In this thesis, we use a model selection approach to demonstrate that clustering analysis, hierarchical structure analysis and temporal analysis are suitable for expressive timing analysis. Firstly in this thesis, we will introduce some common methods for model selection such as Akaike’s Information Criterion, Bayesian Information Criterion and cross-validation. Next we use these methods to demonstrate the best model for clustering expressive timing in piano performances. We propose a number of pre-processing methods and Gaussian Mixture Models with different settings for covariance matrices. The candidate models are compared with three pieces of music, including Balakirev’s Islamey and two Chopin Mazurkas. The results of our model comparison recommend particular models for clustering expressive timing from the candidate models. Hierarchical analysis, or multi-layer analysis, is a popular concept in expressive timing analysis. To compare different hierarchical structures for expressive timing analysis, we propose a new model that suggests music structure boundaries according to expressive timing information and hierarchical structure analysis. We propose a set of hierarchical structures and we compare the resulting models by showing the probability of observing the boundaries of music structure and showing the similarity of the same-performer renderings. Our analysis supports the proposition that hierarchical structure improves the performance of modelling over non-hierarchical models for the performances that we considered. Researchers have also suggested that expressive timing is influenced by music structure and temporal features. In order to investigate this, we consider four Bayesian graphical models that model dependencies between a position in a music score and the expressive timing changes in the previous phrase, on expressive timing in the current phrase. Using our model selection criterion, we find that the position of a phrase in music scores is only shown to effect expressive timing in the current phrase when the previous phrase is also considered. The results in this thesis indicate that model selection is useful in the analysis of expressive timing. The model selection methods we use here could potentially be applied to a wide range of applications, such as predicting human perception of expressive timing in music, providing expressive timing information for music synthesis and performance identification." @default.
- W2596001244 created "2017-03-23" @default.
- W2596001244 creator A5024084275 @default.
- W2596001244 date "2016-03-16" @default.
- W2596001244 modified "2023-09-27" @default.
- W2596001244 title "Expressive timing analysis in classical piano performance by mathematical model selection" @default.
- W2596001244 cites W142212369 @default.
- W2596001244 cites W1501181350 @default.
- W2596001244 cites W1503398984 @default.
- W2596001244 cites W1511986666 @default.
- W2596001244 cites W1519491637 @default.
- W2596001244 cites W1532325895 @default.
- W2596001244 cites W1568574810 @default.
- W2596001244 cites W1568749809 @default.
- W2596001244 cites W1568811167 @default.
- W2596001244 cites W1585280831 @default.
- W2596001244 cites W1590915775 @default.
- W2596001244 cites W167911700 @default.
- W2596001244 cites W1714065864 @default.
- W2596001244 cites W1892947258 @default.
- W2596001244 cites W1970614794 @default.
- W2596001244 cites W1979184250 @default.
- W2596001244 cites W1984526963 @default.
- W2596001244 cites W1999949665 @default.
- W2596001244 cites W2001283902 @default.
- W2596001244 cites W2002966785 @default.
- W2596001244 cites W2006448084 @default.
- W2596001244 cites W2007523307 @default.
- W2596001244 cites W2008350708 @default.
- W2596001244 cites W2009435671 @default.
- W2596001244 cites W2017357066 @default.
- W2596001244 cites W2022371773 @default.
- W2596001244 cites W2023179821 @default.
- W2596001244 cites W2023723978 @default.
- W2596001244 cites W2032763507 @default.
- W2596001244 cites W2038328044 @default.
- W2596001244 cites W2054832201 @default.
- W2596001244 cites W2061457313 @default.
- W2596001244 cites W2064771367 @default.
- W2596001244 cites W2078483536 @default.
- W2596001244 cites W2101464305 @default.
- W2596001244 cites W2107829227 @default.
- W2596001244 cites W2108865855 @default.
- W2596001244 cites W2116721429 @default.
- W2596001244 cites W2129513279 @default.
- W2596001244 cites W2139686198 @default.
- W2596001244 cites W2141885966 @default.
- W2596001244 cites W2142927150 @default.
- W2596001244 cites W2146196738 @default.
- W2596001244 cites W2154643536 @default.
- W2596001244 cites W2157740226 @default.
- W2596001244 cites W2164498268 @default.
- W2596001244 cites W2167455298 @default.
- W2596001244 cites W2214881735 @default.
- W2596001244 cites W2297504990 @default.
- W2596001244 cites W2326122421 @default.
- W2596001244 cites W2330810238 @default.
- W2596001244 cites W2336641927 @default.
- W2596001244 cites W2395462034 @default.
- W2596001244 cites W2402991532 @default.
- W2596001244 cites W266542775 @default.
- W2596001244 cites W2742790163 @default.
- W2596001244 cites W2795504376 @default.
- W2596001244 cites W2965084816 @default.
- W2596001244 cites W3021601205 @default.
- W2596001244 cites W62490825 @default.
- W2596001244 cites W87329255 @default.
- W2596001244 cites W1487592292 @default.
- W2596001244 cites W2572567290 @default.
- W2596001244 hasPublicationYear "2016" @default.
- W2596001244 type Work @default.
- W2596001244 sameAs 2596001244 @default.
- W2596001244 citedByCount "0" @default.
- W2596001244 crossrefType "dissertation" @default.
- W2596001244 hasAuthorship W2596001244A5024084275 @default.
- W2596001244 hasConcept C124086623 @default.
- W2596001244 hasConcept C142362112 @default.
- W2596001244 hasConcept C143857728 @default.
- W2596001244 hasConcept C153349607 @default.
- W2596001244 hasConcept C154945302 @default.
- W2596001244 hasConcept C28490314 @default.
- W2596001244 hasConcept C41008148 @default.
- W2596001244 hasConcept C52119013 @default.
- W2596001244 hasConcept C558565934 @default.
- W2596001244 hasConcept C73555534 @default.
- W2596001244 hasConcept C81917197 @default.
- W2596001244 hasConcept C93959086 @default.
- W2596001244 hasConceptScore W2596001244C124086623 @default.
- W2596001244 hasConceptScore W2596001244C142362112 @default.
- W2596001244 hasConceptScore W2596001244C143857728 @default.
- W2596001244 hasConceptScore W2596001244C153349607 @default.
- W2596001244 hasConceptScore W2596001244C154945302 @default.
- W2596001244 hasConceptScore W2596001244C28490314 @default.
- W2596001244 hasConceptScore W2596001244C41008148 @default.
- W2596001244 hasConceptScore W2596001244C52119013 @default.
- W2596001244 hasConceptScore W2596001244C558565934 @default.
- W2596001244 hasConceptScore W2596001244C73555534 @default.
- W2596001244 hasConceptScore W2596001244C81917197 @default.
- W2596001244 hasConceptScore W2596001244C93959086 @default.
- W2596001244 hasLocation W25960012441 @default.