Matches in SemOpenAlex for { <https://semopenalex.org/work/W2596193635> ?p ?o ?g. }
- W2596193635 endingPage "605" @default.
- W2596193635 startingPage "592" @default.
- W2596193635 abstract "OBJECTIVE Characterization of intraoperative white matter tract (WMT) shift has the potential to compensate for neuronavigation inaccuracies using preoperative brain imaging. This study aimed to quantify and characterize intraoperative WMT shift from the global hemispheric to the regional tract-based scale and to investigate the impact of intraoperative factors (IOFs). METHODS High angular resolution diffusion imaging (HARDI) diffusion-weighted data were acquired over 5 consecutive perioperative time points (MR 1 to MR 5 ) in 16 epilepsy patients (8 male; mean age 9.8 years, range 3.8–15.8 years) using diagnostic and intraoperative 3-T MRI scanners. MR 1 was the preoperative planning scan. MR 2 was the first intraoperative scan acquired with the patient's head fixed in the surgical position. MR 3 was the second intraoperative scan acquired following craniotomy and durotomy, prior to lesion resection. MR 4 was the last intraoperative scan acquired following lesion resection, prior to wound closure. MR 5 was a postoperative scan acquired at the 3-month follow-up visit. Ten association WMT/WMT segments and 1 projection WMT were generated via a probabilistic tractography algorithm from each MRI scan. Image registration was performed through pairwise MRI alignments using the skull segmentation. The MR 1 and MR 2 pairing represented the first surgical stage. The MR 2 and MR 3 pairing represented the second surgical stage. The MR 3 and MR 4 (or MR 5 ) pairing represented the third surgical stage. The WMT shift was quantified by measuring displacements between a pair of WMT centerlines. Linear mixed-effects regression analyses were carried out for 6 IOFs: head rotation, craniotomy size, durotomy size, resected lesion volume, presence of brain edema, and CSF loss via ventricular penetration. RESULTS The average WMT shift in the operative hemisphere was 2.37 mm (range 1.92–3.03 mm) during the first surgical stage, 2.19 mm (range 1.90–3.65 mm) during the second surgical stage, and 2.92 mm (range 2.19–4.32 mm) during the third surgical stage. Greater WMT shift occurred in the operative than the nonoperative hemisphere, in the WMTs adjacent to the surgical lesion rather than those remote to it, and in the superficial rather than the deep segment of the pyramidal tract. Durotomy size and resection size were significant, independent IOFs affecting WMT shift. The presence of brain edema was a marginally significant IOF. Craniotomy size, degree of head rotation, and ventricular penetration were not significant IOFs affecting WMT shift. CONCLUSIONS WMT shift occurs noticeably in tracts adjacent to the surgical lesions, and those motor tracts superficially placed in the operative hemisphere. Intraoperative probabilistic HARDI tractography following craniotomy, durotomy, and lesion resection may compensate for intraoperative WMT shift and improve neuronavigation accuracy." @default.
- W2596193635 created "2017-03-23" @default.
- W2596193635 creator A5016446658 @default.
- W2596193635 creator A5035769650 @default.
- W2596193635 creator A5040550819 @default.
- W2596193635 creator A5068476552 @default.
- W2596193635 creator A5069455483 @default.
- W2596193635 creator A5077808361 @default.
- W2596193635 date "2017-05-01" @default.
- W2596193635 modified "2023-10-11" @default.
- W2596193635 title "A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography" @default.
- W2596193635 cites W1484665822 @default.
- W2596193635 cites W1556167233 @default.
- W2596193635 cites W1965761528 @default.
- W2596193635 cites W1969182279 @default.
- W2596193635 cites W1974288729 @default.
- W2596193635 cites W1974508089 @default.
- W2596193635 cites W1975206112 @default.
- W2596193635 cites W1981176642 @default.
- W2596193635 cites W1983153278 @default.
- W2596193635 cites W1984932121 @default.
- W2596193635 cites W1986269945 @default.
- W2596193635 cites W1988954604 @default.
- W2596193635 cites W2000133863 @default.
- W2596193635 cites W2000770014 @default.
- W2596193635 cites W2001611992 @default.
- W2596193635 cites W2007368755 @default.
- W2596193635 cites W2010077283 @default.
- W2596193635 cites W2012270644 @default.
- W2596193635 cites W2015760527 @default.
- W2596193635 cites W2019221507 @default.
- W2596193635 cites W2027396806 @default.
- W2596193635 cites W2028335831 @default.
- W2596193635 cites W2029949715 @default.
- W2596193635 cites W2031213426 @default.
- W2596193635 cites W2033734235 @default.
- W2596193635 cites W2034252184 @default.
- W2596193635 cites W2039436932 @default.
- W2596193635 cites W2042168850 @default.
- W2596193635 cites W2045632275 @default.
- W2596193635 cites W2047393951 @default.
- W2596193635 cites W2053884965 @default.
- W2596193635 cites W2055525876 @default.
- W2596193635 cites W2055839293 @default.
- W2596193635 cites W2056577753 @default.
- W2596193635 cites W2068744874 @default.
- W2596193635 cites W2076105895 @default.
- W2596193635 cites W2085297965 @default.
- W2596193635 cites W2095642111 @default.
- W2596193635 cites W2098834773 @default.
- W2596193635 cites W2102006162 @default.
- W2596193635 cites W2115557151 @default.
- W2596193635 cites W2139040271 @default.
- W2596193635 cites W2142059961 @default.
- W2596193635 cites W2142900310 @default.
- W2596193635 cites W2145132952 @default.
- W2596193635 cites W2147927529 @default.
- W2596193635 cites W2148540129 @default.
- W2596193635 cites W2149092213 @default.
- W2596193635 cites W2150737561 @default.
- W2596193635 cites W2153860196 @default.
- W2596193635 cites W2162123835 @default.
- W2596193635 cites W2164822884 @default.
- W2596193635 cites W2403237393 @default.
- W2596193635 cites W4234923433 @default.
- W2596193635 cites W4238333796 @default.
- W2596193635 doi "https://doi.org/10.3171/2016.11.peds16312" @default.
- W2596193635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28304232" @default.
- W2596193635 hasPublicationYear "2017" @default.
- W2596193635 type Work @default.
- W2596193635 sameAs 2596193635 @default.
- W2596193635 citedByCount "18" @default.
- W2596193635 countsByYear W25961936352019 @default.
- W2596193635 countsByYear W25961936352020 @default.
- W2596193635 countsByYear W25961936352021 @default.
- W2596193635 countsByYear W25961936352022 @default.
- W2596193635 countsByYear W25961936352023 @default.
- W2596193635 crossrefType "journal-article" @default.
- W2596193635 hasAuthorship W2596193635A5016446658 @default.
- W2596193635 hasAuthorship W2596193635A5035769650 @default.
- W2596193635 hasAuthorship W2596193635A5040550819 @default.
- W2596193635 hasAuthorship W2596193635A5068476552 @default.
- W2596193635 hasAuthorship W2596193635A5069455483 @default.
- W2596193635 hasAuthorship W2596193635A5077808361 @default.
- W2596193635 hasBestOaLocation W25961936351 @default.
- W2596193635 hasConcept C118552586 @default.
- W2596193635 hasConcept C126838900 @default.
- W2596193635 hasConcept C143409427 @default.
- W2596193635 hasConcept C149550507 @default.
- W2596193635 hasConcept C186594802 @default.
- W2596193635 hasConcept C2777503319 @default.
- W2596193635 hasConcept C2778186239 @default.
- W2596193635 hasConcept C2778195096 @default.
- W2596193635 hasConcept C2779370443 @default.
- W2596193635 hasConcept C2779779279 @default.
- W2596193635 hasConcept C2780803581 @default.
- W2596193635 hasConcept C2781192897 @default.
- W2596193635 hasConcept C2989005 @default.