Matches in SemOpenAlex for { <https://semopenalex.org/work/W2596339904> ?p ?o ?g. }
- W2596339904 endingPage "96" @default.
- W2596339904 startingPage "77" @default.
- W2596339904 abstract "Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [11C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation.A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTVMRI. A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment, the feasibility and the clinical value of BTV integration in Gamma Knife treatment planning were considered. Therefore, a qualitative evaluation was carried out by three experienced clinicians.The achieved experimental results showed that GTV and BTV segmentations are statistically correlated (Spearman's rank correlation coefficient: 0.898) but they have low similarity degree (average Dice Similarity Coefficient: 61.87 ± 14.64). Therefore, volume measurements as well as evaluation metrics values demonstrated that MRI and PET convey different but complementary imaging information. GTV and BTV could be combined to enhance treatment planning. In more than 50% of cases the CTV was strongly or moderately conditioned by metabolic imaging. Especially, BTVMRI enhanced the CTV more accurately than BTV in 25% of cases.The proposed fully automatic multimodal PET/MRI segmentation method is a valid operator-independent methodology helping the clinicians to define a CTV that includes both metabolic and morphologic information. BTVMRI and GTV should be considered for a comprehensive treatment planning." @default.
- W2596339904 created "2017-03-23" @default.
- W2596339904 creator A5017020400 @default.
- W2596339904 creator A5023090551 @default.
- W2596339904 creator A5030841642 @default.
- W2596339904 creator A5044135081 @default.
- W2596339904 creator A5045741618 @default.
- W2596339904 creator A5063666798 @default.
- W2596339904 creator A5065288854 @default.
- W2596339904 creator A5073163964 @default.
- W2596339904 creator A5081459146 @default.
- W2596339904 creator A5085371815 @default.
- W2596339904 creator A5091044833 @default.
- W2596339904 date "2017-06-01" @default.
- W2596339904 modified "2023-10-17" @default.
- W2596339904 title "A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning" @default.
- W2596339904 cites W146667522 @default.
- W2596339904 cites W1512548042 @default.
- W2596339904 cites W1529845478 @default.
- W2596339904 cites W1608578086 @default.
- W2596339904 cites W1609010287 @default.
- W2596339904 cites W1909740415 @default.
- W2596339904 cites W1978881309 @default.
- W2596339904 cites W1984149466 @default.
- W2596339904 cites W1991113069 @default.
- W2596339904 cites W1995450389 @default.
- W2596339904 cites W2005113718 @default.
- W2596339904 cites W2010632044 @default.
- W2596339904 cites W2018760046 @default.
- W2596339904 cites W2019929699 @default.
- W2596339904 cites W2034432063 @default.
- W2596339904 cites W2038751110 @default.
- W2596339904 cites W2043337697 @default.
- W2596339904 cites W2052932094 @default.
- W2596339904 cites W2053677366 @default.
- W2596339904 cites W2059925738 @default.
- W2596339904 cites W2065628492 @default.
- W2596339904 cites W2066579873 @default.
- W2596339904 cites W2076649680 @default.
- W2596339904 cites W2077490614 @default.
- W2596339904 cites W2080593651 @default.
- W2596339904 cites W2081420220 @default.
- W2596339904 cites W2081549451 @default.
- W2596339904 cites W2085790339 @default.
- W2596339904 cites W2093008423 @default.
- W2596339904 cites W2094054777 @default.
- W2596339904 cites W2095272243 @default.
- W2596339904 cites W2095450675 @default.
- W2596339904 cites W2099698084 @default.
- W2596339904 cites W2105456967 @default.
- W2596339904 cites W2107954485 @default.
- W2596339904 cites W2111241951 @default.
- W2596339904 cites W2111744777 @default.
- W2596339904 cites W2125130222 @default.
- W2596339904 cites W2125637308 @default.
- W2596339904 cites W2128280382 @default.
- W2596339904 cites W2130379047 @default.
- W2596339904 cites W2132363464 @default.
- W2596339904 cites W2136503713 @default.
- W2596339904 cites W2140783866 @default.
- W2596339904 cites W2144599373 @default.
- W2596339904 cites W2148339592 @default.
- W2596339904 cites W2155263737 @default.
- W2596339904 cites W2156267858 @default.
- W2596339904 cites W2156471553 @default.
- W2596339904 cites W2156808562 @default.
- W2596339904 cites W2156875677 @default.
- W2596339904 cites W2158157671 @default.
- W2596339904 cites W2158914083 @default.
- W2596339904 cites W2163529068 @default.
- W2596339904 cites W2164736154 @default.
- W2596339904 cites W2170744163 @default.
- W2596339904 cites W2231793236 @default.
- W2596339904 cites W2281060774 @default.
- W2596339904 cites W2305072012 @default.
- W2596339904 cites W2332142064 @default.
- W2596339904 cites W2471786392 @default.
- W2596339904 cites W3034060087 @default.
- W2596339904 cites W4212880355 @default.
- W2596339904 cites W4234687098 @default.
- W2596339904 cites W803722028 @default.
- W2596339904 cites W996693876 @default.
- W2596339904 doi "https://doi.org/10.1016/j.cmpb.2017.03.011" @default.
- W2596339904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28495008" @default.
- W2596339904 hasPublicationYear "2017" @default.
- W2596339904 type Work @default.
- W2596339904 sameAs 2596339904 @default.
- W2596339904 citedByCount "39" @default.
- W2596339904 countsByYear W25963399042017 @default.
- W2596339904 countsByYear W25963399042018 @default.
- W2596339904 countsByYear W25963399042019 @default.
- W2596339904 countsByYear W25963399042020 @default.
- W2596339904 countsByYear W25963399042021 @default.
- W2596339904 countsByYear W25963399042022 @default.
- W2596339904 countsByYear W25963399042023 @default.
- W2596339904 crossrefType "journal-article" @default.
- W2596339904 hasAuthorship W2596339904A5017020400 @default.
- W2596339904 hasAuthorship W2596339904A5023090551 @default.