Matches in SemOpenAlex for { <https://semopenalex.org/work/W2596615883> ?p ?o ?g. }
- W2596615883 endingPage "203" @default.
- W2596615883 startingPage "193" @default.
- W2596615883 abstract "Land-use is transforming habitats across the globe, thereby threatening wildlife. Large mammals are especially affected because they require large tracts of intact habitat and functioning corridors between core habitat areas. Accurate land-cover data is critical to identify core habitat areas and corridors, and medium resolution sensors such as Landsat 8 provide opportunities to map land cover for conservation planning. Here, we used all available Landsat 8 imagery from launch through December 2014 to identify large mammal corridors and assess their quality across the Caucasus Mountains (> 700,000 km2). Specifically, we tested the usefulness of seasonal image composites (spring, summer, fall, and winter) and a range of image metrics (e.g., mean and median reflectance across all clear observations) to map nine land-cover classes with a Random Forest classifier. Using image composites from all four seasons yielded markedly higher overall accuracy than using single-season composites (8% increase) and the inclusion of image metrics further improved the classification significantly. Our final land-cover map had an overall accuracy of 85%. Using our land-cover map, we parameterized connectivity models for three generic large mammal groups and identified wildlife corridors and bottlenecks within corridors with cost-distance modeling and circuit theory. Corridors were numerous (in total, 85, 131, and 132 corridors for our three mammal groups, respectively), but often had bottlenecks or high average cost along the least-cost path, indicating limited functioning. Our findings highlight the potential of Landsat 8 composites to support connectivity analyses across large areas, and thus to contribute to conservation planning, and serve as an early warning system for biodiversity loss in areas where on-the-ground monitoring is challenging, such as in the Caucasus." @default.
- W2596615883 created "2017-03-23" @default.
- W2596615883 creator A5008214063 @default.
- W2596615883 creator A5020321551 @default.
- W2596615883 creator A5024394639 @default.
- W2596615883 creator A5035196763 @default.
- W2596615883 creator A5060331729 @default.
- W2596615883 creator A5077878098 @default.
- W2596615883 creator A5079486350 @default.
- W2596615883 creator A5091785149 @default.
- W2596615883 date "2017-05-01" @default.
- W2596615883 modified "2023-09-24" @default.
- W2596615883 title "Assessing landscape connectivity for large mammals in the Caucasus using Landsat 8 seasonal image composites" @default.
- W2596615883 cites W1029997993 @default.
- W2596615883 cites W1502104821 @default.
- W2596615883 cites W1720178141 @default.
- W2596615883 cites W1889848888 @default.
- W2596615883 cites W1943557153 @default.
- W2596615883 cites W1968299234 @default.
- W2596615883 cites W1968563567 @default.
- W2596615883 cites W1974329551 @default.
- W2596615883 cites W1979644084 @default.
- W2596615883 cites W1980955423 @default.
- W2596615883 cites W1981213426 @default.
- W2596615883 cites W1990653740 @default.
- W2596615883 cites W1991383976 @default.
- W2596615883 cites W2011500029 @default.
- W2596615883 cites W2013508584 @default.
- W2596615883 cites W2022078304 @default.
- W2596615883 cites W2022204818 @default.
- W2596615883 cites W2023015896 @default.
- W2596615883 cites W2026400855 @default.
- W2596615883 cites W2026830610 @default.
- W2596615883 cites W2042504207 @default.
- W2596615883 cites W2044136500 @default.
- W2596615883 cites W2046535835 @default.
- W2596615883 cites W2048204427 @default.
- W2596615883 cites W2052734169 @default.
- W2596615883 cites W2054364864 @default.
- W2596615883 cites W2057438322 @default.
- W2596615883 cites W2071252970 @default.
- W2596615883 cites W2073755771 @default.
- W2596615883 cites W2081829028 @default.
- W2596615883 cites W2083595345 @default.
- W2596615883 cites W2085297326 @default.
- W2596615883 cites W2090430558 @default.
- W2596615883 cites W2091202128 @default.
- W2596615883 cites W2098823157 @default.
- W2596615883 cites W2106584184 @default.
- W2596615883 cites W2111606325 @default.
- W2596615883 cites W2114828048 @default.
- W2596615883 cites W2115006245 @default.
- W2596615883 cites W2121690928 @default.
- W2596615883 cites W2121929826 @default.
- W2596615883 cites W2124160418 @default.
- W2596615883 cites W2128077134 @default.
- W2596615883 cites W2131418421 @default.
- W2596615883 cites W2147739096 @default.
- W2596615883 cites W2162775815 @default.
- W2596615883 cites W2167189097 @default.
- W2596615883 cites W2170121306 @default.
- W2596615883 cites W2170244367 @default.
- W2596615883 cites W2188083314 @default.
- W2596615883 cites W2234344930 @default.
- W2596615883 cites W2322750819 @default.
- W2596615883 cites W2911964244 @default.
- W2596615883 doi "https://doi.org/10.1016/j.rse.2017.03.001" @default.
- W2596615883 hasPublicationYear "2017" @default.
- W2596615883 type Work @default.
- W2596615883 sameAs 2596615883 @default.
- W2596615883 citedByCount "41" @default.
- W2596615883 countsByYear W25966158832018 @default.
- W2596615883 countsByYear W25966158832019 @default.
- W2596615883 countsByYear W25966158832020 @default.
- W2596615883 countsByYear W25966158832021 @default.
- W2596615883 countsByYear W25966158832022 @default.
- W2596615883 countsByYear W25966158832023 @default.
- W2596615883 crossrefType "journal-article" @default.
- W2596615883 hasAuthorship W2596615883A5008214063 @default.
- W2596615883 hasAuthorship W2596615883A5020321551 @default.
- W2596615883 hasAuthorship W2596615883A5024394639 @default.
- W2596615883 hasAuthorship W2596615883A5035196763 @default.
- W2596615883 hasAuthorship W2596615883A5060331729 @default.
- W2596615883 hasAuthorship W2596615883A5077878098 @default.
- W2596615883 hasAuthorship W2596615883A5079486350 @default.
- W2596615883 hasAuthorship W2596615883A5091785149 @default.
- W2596615883 hasConcept C100970517 @default.
- W2596615883 hasConcept C119857082 @default.
- W2596615883 hasConcept C169258074 @default.
- W2596615883 hasConcept C185933670 @default.
- W2596615883 hasConcept C18903297 @default.
- W2596615883 hasConcept C205649164 @default.
- W2596615883 hasConcept C24784978 @default.
- W2596615883 hasConcept C2780648208 @default.
- W2596615883 hasConcept C29376679 @default.
- W2596615883 hasConcept C39432304 @default.
- W2596615883 hasConcept C41008148 @default.
- W2596615883 hasConcept C4792198 @default.