Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597136551> ?p ?o ?g. }
- W2597136551 abstract "This thesis is an analytical and computational treatment of Turing models, which are coupled partial differential equations describing the reaction and diffusion behavior of chemicals. Under particular conditions, such systems are capable of generating stationary chemical patterns of finite characteristic wave lengths even if the system starts from an arbitrary initial configuration. The characteristics of the resulting dissipative patterns are determined intrinsically by the reaction and diffusion rates of the chemicals, not by external constraints. Turing patterns have been shown to have counterparts in natural systems and thus Turing systems could provide a plausible way to model the mechanisms of biological growth. Turing patterns grow due to diffusion-driven instability as a result of infinitesimal perturbations around the stationary state of the model and exist only under non-equilibrium conditions. Turing systems have been studied using chemical experiments, mathematical tools and numerical simulations. In this thesis a Turing model called the Barrio-Varea-Aragon-Maini (BVAM) model is studied by employing both analytical and numerical methods. In addition to the pattern formation in two-dimensional domains, also the formation of three-dimensional structures is studied extensively. The scaled form of the BVAM model is derived from first principles. The model is then studied using the standard linear stability analysis, which reveals the parameter sets corresponding to a Turing instability and the resulting unstable wave modes. Then nonlinear bifurcation analysis is carried out to find out the stability of morphologies induced by two-dimensional hexagonal symmetry and various three-dimensional symmetries (SC, BCC, FCC). This is realized by employing the center manifold reduction technique to obtain the amplitude equations describing the reduced chemical dynamics on the center manifold. The main numerical results presented in this thesis include the study of the Turing pattern selection in the presence of bistability, and the study of the structure selection in three-dimensional Turing systems depending on the initial configuration. Also, the work on the effect of numerous constraints, such as random noise, changes in the system parameters, thickening domain and multistability on Turing pattern formation brings new insight concerning the state selection problem of non-equilibrium physics." @default.
- W2597136551 created "2017-03-23" @default.
- W2597136551 creator A5054912545 @default.
- W2597136551 date "2004-11-27" @default.
- W2597136551 modified "2023-09-25" @default.
- W2597136551 title "Computational studies of pattern formation in Turing systems" @default.
- W2597136551 cites W14563978 @default.
- W2597136551 cites W1490058732 @default.
- W2597136551 cites W1494047507 @default.
- W2597136551 cites W1513973570 @default.
- W2597136551 cites W1536945077 @default.
- W2597136551 cites W1561313149 @default.
- W2597136551 cites W1565312120 @default.
- W2597136551 cites W1576847343 @default.
- W2597136551 cites W1592415565 @default.
- W2597136551 cites W1609328604 @default.
- W2597136551 cites W1651423553 @default.
- W2597136551 cites W1676772665 @default.
- W2597136551 cites W1684771026 @default.
- W2597136551 cites W179924513 @default.
- W2597136551 cites W1863504080 @default.
- W2597136551 cites W1876456565 @default.
- W2597136551 cites W1963942260 @default.
- W2597136551 cites W1964053774 @default.
- W2597136551 cites W1965445146 @default.
- W2597136551 cites W1970352372 @default.
- W2597136551 cites W1971086592 @default.
- W2597136551 cites W1971232585 @default.
- W2597136551 cites W1973172262 @default.
- W2597136551 cites W1973531796 @default.
- W2597136551 cites W1973711737 @default.
- W2597136551 cites W1975208351 @default.
- W2597136551 cites W1975245062 @default.
- W2597136551 cites W1975381147 @default.
- W2597136551 cites W1978186170 @default.
- W2597136551 cites W1978279580 @default.
- W2597136551 cites W1979466236 @default.
- W2597136551 cites W1980450463 @default.
- W2597136551 cites W1980661496 @default.
- W2597136551 cites W1981620787 @default.
- W2597136551 cites W1982014815 @default.
- W2597136551 cites W1982088462 @default.
- W2597136551 cites W1982787844 @default.
- W2597136551 cites W1988679690 @default.
- W2597136551 cites W1989090075 @default.
- W2597136551 cites W1989861930 @default.
- W2597136551 cites W1991007831 @default.
- W2597136551 cites W1992963104 @default.
- W2597136551 cites W1993999944 @default.
- W2597136551 cites W1994997770 @default.
- W2597136551 cites W1995040333 @default.
- W2597136551 cites W1997067084 @default.
- W2597136551 cites W1998455908 @default.
- W2597136551 cites W1999684450 @default.
- W2597136551 cites W1999747351 @default.
- W2597136551 cites W2000883601 @default.
- W2597136551 cites W2001672996 @default.
- W2597136551 cites W2002094651 @default.
- W2597136551 cites W2003347741 @default.
- W2597136551 cites W2005436324 @default.
- W2597136551 cites W2006640177 @default.
- W2597136551 cites W2007571690 @default.
- W2597136551 cites W2008061806 @default.
- W2597136551 cites W2008639444 @default.
- W2597136551 cites W2013872595 @default.
- W2597136551 cites W2014789862 @default.
- W2597136551 cites W2016935008 @default.
- W2597136551 cites W2021826226 @default.
- W2597136551 cites W2022738778 @default.
- W2597136551 cites W2023266047 @default.
- W2597136551 cites W2024402835 @default.
- W2597136551 cites W2026259231 @default.
- W2597136551 cites W2026285154 @default.
- W2597136551 cites W2028058384 @default.
- W2597136551 cites W2031388675 @default.
- W2597136551 cites W2031460487 @default.
- W2597136551 cites W2032931866 @default.
- W2597136551 cites W2033566973 @default.
- W2597136551 cites W2033625883 @default.
- W2597136551 cites W2033736907 @default.
- W2597136551 cites W2035199651 @default.
- W2597136551 cites W2036235707 @default.
- W2597136551 cites W2037324318 @default.
- W2597136551 cites W2040323430 @default.
- W2597136551 cites W2041161071 @default.
- W2597136551 cites W2046477474 @default.
- W2597136551 cites W2047506587 @default.
- W2597136551 cites W2047677763 @default.
- W2597136551 cites W2049852697 @default.
- W2597136551 cites W2050673676 @default.
- W2597136551 cites W2051172098 @default.
- W2597136551 cites W2053377011 @default.
- W2597136551 cites W2053482507 @default.
- W2597136551 cites W2054353519 @default.
- W2597136551 cites W2054571151 @default.
- W2597136551 cites W2057043694 @default.
- W2597136551 cites W2058827055 @default.
- W2597136551 cites W2061832930 @default.
- W2597136551 cites W2062528822 @default.
- W2597136551 cites W2066082500 @default.