Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597156741> ?p ?o ?g. }
- W2597156741 endingPage "4253" @default.
- W2597156741 startingPage "4237" @default.
- W2597156741 abstract "To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average [Formula: see text] HU and the ME [Formula: see text] HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of [Formula: see text] in the PTV for [Formula: see text], and between [Formula: see text] and 0.05% in the PTV, bladder, rectum and femur heads for D mean and [Formula: see text]. Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP." @default.
- W2597156741 created "2017-03-23" @default.
- W2597156741 creator A5015121747 @default.
- W2597156741 creator A5018652821 @default.
- W2597156741 creator A5053042574 @default.
- W2597156741 creator A5060132103 @default.
- W2597156741 creator A5060445631 @default.
- W2597156741 creator A5061288342 @default.
- W2597156741 creator A5062641751 @default.
- W2597156741 creator A5076107114 @default.
- W2597156741 creator A5077080413 @default.
- W2597156741 creator A5078180201 @default.
- W2597156741 creator A5078514536 @default.
- W2597156741 creator A5082106258 @default.
- W2597156741 date "2017-05-05" @default.
- W2597156741 modified "2023-10-15" @default.
- W2597156741 title "Iterative framework for the joint segmentation and CT synthesis of MR images: application to MRI-only radiotherapy treatment planning" @default.
- W2597156741 cites W1217179252 @default.
- W2597156741 cites W1605218991 @default.
- W2597156741 cites W1822713087 @default.
- W2597156741 cites W1949599440 @default.
- W2597156741 cites W1998070036 @default.
- W2597156741 cites W1999954977 @default.
- W2597156741 cites W2003933915 @default.
- W2597156741 cites W2015897296 @default.
- W2597156741 cites W2018662705 @default.
- W2597156741 cites W2021177063 @default.
- W2597156741 cites W2025172079 @default.
- W2597156741 cites W2026752633 @default.
- W2597156741 cites W2049880502 @default.
- W2597156741 cites W2052617496 @default.
- W2597156741 cites W2060405238 @default.
- W2597156741 cites W2080858163 @default.
- W2597156741 cites W2081599679 @default.
- W2597156741 cites W2093723730 @default.
- W2597156741 cites W2107105977 @default.
- W2597156741 cites W2107956652 @default.
- W2597156741 cites W2117340355 @default.
- W2597156741 cites W2128124359 @default.
- W2597156741 cites W2133665775 @default.
- W2597156741 cites W2139972113 @default.
- W2597156741 cites W2148157540 @default.
- W2597156741 cites W2162246940 @default.
- W2597156741 cites W2257626117 @default.
- W2597156741 cites W2294421635 @default.
- W2597156741 cites W2513595145 @default.
- W2597156741 cites W2525943499 @default.
- W2597156741 cites W2526921890 @default.
- W2597156741 cites W4211007335 @default.
- W2597156741 doi "https://doi.org/10.1088/1361-6560/aa66bf" @default.
- W2597156741 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5423555" @default.
- W2597156741 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28291745" @default.
- W2597156741 hasPublicationYear "2017" @default.
- W2597156741 type Work @default.
- W2597156741 sameAs 2597156741 @default.
- W2597156741 citedByCount "37" @default.
- W2597156741 countsByYear W25971567412017 @default.
- W2597156741 countsByYear W25971567412018 @default.
- W2597156741 countsByYear W25971567412019 @default.
- W2597156741 countsByYear W25971567412020 @default.
- W2597156741 countsByYear W25971567412021 @default.
- W2597156741 countsByYear W25971567412022 @default.
- W2597156741 countsByYear W25971567412023 @default.
- W2597156741 crossrefType "journal-article" @default.
- W2597156741 hasAuthorship W2597156741A5015121747 @default.
- W2597156741 hasAuthorship W2597156741A5018652821 @default.
- W2597156741 hasAuthorship W2597156741A5053042574 @default.
- W2597156741 hasAuthorship W2597156741A5060132103 @default.
- W2597156741 hasAuthorship W2597156741A5060445631 @default.
- W2597156741 hasAuthorship W2597156741A5061288342 @default.
- W2597156741 hasAuthorship W2597156741A5062641751 @default.
- W2597156741 hasAuthorship W2597156741A5076107114 @default.
- W2597156741 hasAuthorship W2597156741A5077080413 @default.
- W2597156741 hasAuthorship W2597156741A5078180201 @default.
- W2597156741 hasAuthorship W2597156741A5078514536 @default.
- W2597156741 hasAuthorship W2597156741A5082106258 @default.
- W2597156741 hasBestOaLocation W25971567411 @default.
- W2597156741 hasConcept C105702510 @default.
- W2597156741 hasConcept C115961682 @default.
- W2597156741 hasConcept C126838900 @default.
- W2597156741 hasConcept C143409427 @default.
- W2597156741 hasConcept C154945302 @default.
- W2597156741 hasConcept C166704113 @default.
- W2597156741 hasConcept C201645570 @default.
- W2597156741 hasConcept C2776673561 @default.
- W2597156741 hasConcept C2989005 @default.
- W2597156741 hasConcept C41008148 @default.
- W2597156741 hasConcept C509974204 @default.
- W2597156741 hasConcept C53533937 @default.
- W2597156741 hasConcept C71924100 @default.
- W2597156741 hasConcept C89600930 @default.
- W2597156741 hasConceptScore W2597156741C105702510 @default.
- W2597156741 hasConceptScore W2597156741C115961682 @default.
- W2597156741 hasConceptScore W2597156741C126838900 @default.
- W2597156741 hasConceptScore W2597156741C143409427 @default.
- W2597156741 hasConceptScore W2597156741C154945302 @default.
- W2597156741 hasConceptScore W2597156741C166704113 @default.
- W2597156741 hasConceptScore W2597156741C201645570 @default.