Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597273636> ?p ?o ?g. }
- W2597273636 abstract "Principal component analysis (PCA) is fundamental to statistical machine learning. It extracts latent principal factors that contribute to the most variation of the data. When data are stored across multiple machines, however, communication cost can prohibit the computation of PCA in a central location and distributed algorithms for PCA are thus needed. This paper proposes and studies a distributed PCA algorithm: each node machine computes the top $K$ eigenvectors and transmits them to the central server; the central server then aggregates the information from all the node machines and conducts a PCA based on the aggregated information. We investigate the bias and variance for the resulting distributed estimator of the top $K$ eigenvectors. In particular, we show that for distributions with symmetric innovation, the empirical top eigenspaces are unbiased and hence the distributed PCA is unbiased. We derive the rate of convergence for distributed PCA estimators, which depends explicitly on the effective rank of covariance, eigen-gap, and the number of machines. We show that when the number of machines is not unreasonably large, the distributed PCA performs as well as the whole sample PCA, even without full access of whole data. The theoretical results are verified by an extensive simulation study. We also extend our analysis to the heterogeneous case where the population covariance matrices are different across local machines but share similar top eigen-structures." @default.
- W2597273636 created "2017-03-23" @default.
- W2597273636 creator A5024595443 @default.
- W2597273636 creator A5031910872 @default.
- W2597273636 creator A5032095907 @default.
- W2597273636 creator A5046454314 @default.
- W2597273636 date "2017-02-21" @default.
- W2597273636 modified "2023-09-25" @default.
- W2597273636 title "Distributed Estimation of Principal Eigenspaces" @default.
- W2597273636 cites W1520752838 @default.
- W2597273636 cites W1575147392 @default.
- W2597273636 cites W1923365686 @default.
- W2597273636 cites W1970377488 @default.
- W2597273636 cites W1975570699 @default.
- W2597273636 cites W2018199316 @default.
- W2597273636 cites W2040214144 @default.
- W2597273636 cites W2066315659 @default.
- W2597273636 cites W2066459155 @default.
- W2597273636 cites W2071128523 @default.
- W2597273636 cites W2075206908 @default.
- W2597273636 cites W2088911135 @default.
- W2597273636 cites W2090454644 @default.
- W2597273636 cites W2094754409 @default.
- W2597273636 cites W2097714737 @default.
- W2597273636 cites W2101275186 @default.
- W2597273636 cites W2117756735 @default.
- W2597273636 cites W2142535750 @default.
- W2597273636 cites W2152968972 @default.
- W2597273636 cites W2165918462 @default.
- W2597273636 cites W2198333641 @default.
- W2597273636 cites W2279901945 @default.
- W2597273636 cites W2291895482 @default.
- W2597273636 cites W2396549945 @default.
- W2597273636 cites W2508866287 @default.
- W2597273636 cites W2517293543 @default.
- W2597273636 cites W2518752564 @default.
- W2597273636 cites W2519690476 @default.
- W2597273636 cites W2524946712 @default.
- W2597273636 cites W2544745864 @default.
- W2597273636 cites W2592546902 @default.
- W2597273636 cites W2610558234 @default.
- W2597273636 cites W2613940844 @default.
- W2597273636 cites W2741553848 @default.
- W2597273636 cites W2949789485 @default.
- W2597273636 cites W2963770579 @default.
- W2597273636 cites W2963879412 @default.
- W2597273636 cites W2964242436 @default.
- W2597273636 cites W2965497096 @default.
- W2597273636 cites W3105364218 @default.
- W2597273636 cites W3106209397 @default.
- W2597273636 cites W658559791 @default.
- W2597273636 cites W93530381 @default.
- W2597273636 cites W94063595 @default.
- W2597273636 doi "https://doi.org/10.48550/arxiv.1702.06488" @default.
- W2597273636 hasPublicationYear "2017" @default.
- W2597273636 type Work @default.
- W2597273636 sameAs 2597273636 @default.
- W2597273636 citedByCount "10" @default.
- W2597273636 countsByYear W25972736362017 @default.
- W2597273636 countsByYear W25972736362018 @default.
- W2597273636 countsByYear W25972736362019 @default.
- W2597273636 countsByYear W25972736362020 @default.
- W2597273636 crossrefType "posted-content" @default.
- W2597273636 hasAuthorship W2597273636A5024595443 @default.
- W2597273636 hasAuthorship W2597273636A5031910872 @default.
- W2597273636 hasAuthorship W2597273636A5032095907 @default.
- W2597273636 hasAuthorship W2597273636A5046454314 @default.
- W2597273636 hasBestOaLocation W25972736361 @default.
- W2597273636 hasConcept C105795698 @default.
- W2597273636 hasConcept C11413529 @default.
- W2597273636 hasConcept C114614502 @default.
- W2597273636 hasConcept C121332964 @default.
- W2597273636 hasConcept C124101348 @default.
- W2597273636 hasConcept C144024400 @default.
- W2597273636 hasConcept C149923435 @default.
- W2597273636 hasConcept C154945302 @default.
- W2597273636 hasConcept C158693339 @default.
- W2597273636 hasConcept C164226766 @default.
- W2597273636 hasConcept C178650346 @default.
- W2597273636 hasConcept C185142706 @default.
- W2597273636 hasConcept C185429906 @default.
- W2597273636 hasConcept C27438332 @default.
- W2597273636 hasConcept C2908647359 @default.
- W2597273636 hasConcept C33923547 @default.
- W2597273636 hasConcept C41008148 @default.
- W2597273636 hasConcept C45374587 @default.
- W2597273636 hasConcept C62520636 @default.
- W2597273636 hasConceptScore W2597273636C105795698 @default.
- W2597273636 hasConceptScore W2597273636C11413529 @default.
- W2597273636 hasConceptScore W2597273636C114614502 @default.
- W2597273636 hasConceptScore W2597273636C121332964 @default.
- W2597273636 hasConceptScore W2597273636C124101348 @default.
- W2597273636 hasConceptScore W2597273636C144024400 @default.
- W2597273636 hasConceptScore W2597273636C149923435 @default.
- W2597273636 hasConceptScore W2597273636C154945302 @default.
- W2597273636 hasConceptScore W2597273636C158693339 @default.
- W2597273636 hasConceptScore W2597273636C164226766 @default.
- W2597273636 hasConceptScore W2597273636C178650346 @default.
- W2597273636 hasConceptScore W2597273636C185142706 @default.
- W2597273636 hasConceptScore W2597273636C185429906 @default.