Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597366241> ?p ?o ?g. }
- W2597366241 endingPage "121" @default.
- W2597366241 startingPage "105" @default.
- W2597366241 abstract "Color and strokes are the salient features of text regions in an image. In this work, we use both these features as cues, and introduce a novel energy function to formulate the text binarization problem. The minimum of this energy function corresponds to the optimal binarization. We minimize the energy function with an iterative graph cut-based algorithm. Our model is robust to variations in foreground and background as we learn Gaussian mixture models for color and strokes in each iteration of the graph cut. We show results on word images from the challenging ICDAR 2003/2011, born-digital image and street view text datasets, as well as full scene images containing text from ICDAR 2013 datasets, and compare our performance with state-of-the-art methods. Our approach shows significant improvements in performance under a variety of performance measures commonly used to assess text binarization schemes. In addition, our method adapts to diverse document images, like text in videos, handwritten text images." @default.
- W2597366241 created "2017-03-23" @default.
- W2597366241 creator A5049440980 @default.
- W2597366241 creator A5053112307 @default.
- W2597366241 creator A5075621328 @default.
- W2597366241 date "2017-04-03" @default.
- W2597366241 modified "2023-10-13" @default.
- W2597366241 title "Unsupervised refinement of color and stroke features for text binarization" @default.
- W2597366241 cites W1521064364 @default.
- W2597366241 cites W1530108572 @default.
- W2597366241 cites W1569614731 @default.
- W2597366241 cites W1785730614 @default.
- W2597366241 cites W1880780878 @default.
- W2597366241 cites W1966631307 @default.
- W2597366241 cites W1978158985 @default.
- W2597366241 cites W1979122072 @default.
- W2597366241 cites W1995790019 @default.
- W2597366241 cites W2008806374 @default.
- W2597366241 cites W2013916297 @default.
- W2597366241 cites W2016829658 @default.
- W2597366241 cites W2022989269 @default.
- W2597366241 cites W2025871304 @default.
- W2597366241 cites W2025967950 @default.
- W2597366241 cites W2035080499 @default.
- W2597366241 cites W2049951199 @default.
- W2597366241 cites W2052393437 @default.
- W2597366241 cites W2061958803 @default.
- W2597366241 cites W2063823869 @default.
- W2597366241 cites W2065029203 @default.
- W2597366241 cites W2069472161 @default.
- W2597366241 cites W2074078071 @default.
- W2597366241 cites W2076546855 @default.
- W2597366241 cites W2079172786 @default.
- W2597366241 cites W2091863778 @default.
- W2597366241 cites W2093162679 @default.
- W2597366241 cites W2093817540 @default.
- W2597366241 cites W2095428880 @default.
- W2597366241 cites W2101309634 @default.
- W2597366241 cites W2108193766 @default.
- W2597366241 cites W2113137767 @default.
- W2597366241 cites W2119162941 @default.
- W2597366241 cites W2124351162 @default.
- W2597366241 cites W2124632101 @default.
- W2597366241 cites W2128060444 @default.
- W2597366241 cites W2131447359 @default.
- W2597366241 cites W2142159465 @default.
- W2597366241 cites W2147237076 @default.
- W2597366241 cites W2156605212 @default.
- W2597366241 cites W2161969291 @default.
- W2597366241 cites W2162075956 @default.
- W2597366241 cites W2166103567 @default.
- W2597366241 cites W2169597893 @default.
- W2597366241 cites W2555860637 @default.
- W2597366241 cites W2570695987 @default.
- W2597366241 cites W2579701886 @default.
- W2597366241 cites W2915106267 @default.
- W2597366241 cites W4247264488 @default.
- W2597366241 cites W4299345493 @default.
- W2597366241 cites W70975097 @default.
- W2597366241 cites W1980704598 @default.
- W2597366241 doi "https://doi.org/10.1007/s10032-017-0283-9" @default.
- W2597366241 hasPublicationYear "2017" @default.
- W2597366241 type Work @default.
- W2597366241 sameAs 2597366241 @default.
- W2597366241 citedByCount "13" @default.
- W2597366241 countsByYear W25973662412018 @default.
- W2597366241 countsByYear W25973662412019 @default.
- W2597366241 countsByYear W25973662412020 @default.
- W2597366241 countsByYear W25973662412021 @default.
- W2597366241 countsByYear W25973662412023 @default.
- W2597366241 crossrefType "journal-article" @default.
- W2597366241 hasAuthorship W2597366241A5049440980 @default.
- W2597366241 hasAuthorship W2597366241A5053112307 @default.
- W2597366241 hasAuthorship W2597366241A5075621328 @default.
- W2597366241 hasBestOaLocation W25973662412 @default.
- W2597366241 hasConcept C105795698 @default.
- W2597366241 hasConcept C115961682 @default.
- W2597366241 hasConcept C121332964 @default.
- W2597366241 hasConcept C132525143 @default.
- W2597366241 hasConcept C153180895 @default.
- W2597366241 hasConcept C154945302 @default.
- W2597366241 hasConcept C163716315 @default.
- W2597366241 hasConcept C186370098 @default.
- W2597366241 hasConcept C2780719617 @default.
- W2597366241 hasConcept C31972630 @default.
- W2597366241 hasConcept C33923547 @default.
- W2597366241 hasConcept C41008148 @default.
- W2597366241 hasConcept C62520636 @default.
- W2597366241 hasConcept C80444323 @default.
- W2597366241 hasConceptScore W2597366241C105795698 @default.
- W2597366241 hasConceptScore W2597366241C115961682 @default.
- W2597366241 hasConceptScore W2597366241C121332964 @default.
- W2597366241 hasConceptScore W2597366241C132525143 @default.
- W2597366241 hasConceptScore W2597366241C153180895 @default.
- W2597366241 hasConceptScore W2597366241C154945302 @default.
- W2597366241 hasConceptScore W2597366241C163716315 @default.
- W2597366241 hasConceptScore W2597366241C186370098 @default.
- W2597366241 hasConceptScore W2597366241C2780719617 @default.