Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597382602> ?p ?o ?g. }
- W2597382602 endingPage "460" @default.
- W2597382602 startingPage "425" @default.
- W2597382602 abstract "In this paper we used simulation tools to study turbulent boundary-layer structures in the roughness sublayer. Of particular interest is the case of a neutrally-stratified atmospheric boundary layer in which the lower boundary is covered by a homogeneous plant canopy. The goal of this study was to formulate a consistent conceptual model for the creation and evolution of the dominant coherent structures associated with canopy roughness and how they link with features observed in the overlying inertial sublayer. First, coherent structures were examined using temporally developing flow where the full range of turbulent scales had not yet developed, which allowed for instantaneous visualizations. These visualizations were used to formulate a conceptual model, which was then further tested using composite-averaged structure realizations from fully-developed flow with a very large Reynolds number. This study concluded that quasi two-dimensional mixing-layer-like roller structures exist in the developed flow and give the largest contributions to mean Reynolds stresses near the canopy. This work fully acknowledges the presence of highly three-dimensional and localized vortex pairing processes. The primary argument is that, as in a mixing layer, the smaller three-dimensional vortex interactions do not destroy the larger two-dimensional structure. Because the flow has a very large Reynolds number, the roller-like structures are not well-defined vortices but rather are a conglomerate of a large range of smaller-scale vortex structures that create irregularities. Because of this, the larger-scale structure is more difficult to detect in correlation or conditional sampling analyses. The frequently reported ‘scalar microfronts’ and associated spikes in pressure occur in the slip-like region between adjacent rollers. As smaller vortices within roller structures stretch, they evolve to form arch- and hairpin-shaped structures. Blocking by the low-flux canopy creates vertical asymmetry, and tends to impede the vertical progression of head-down structures. Head-up hairpins are allowed to continually stretch upward into the overlying inertial sublayer, where they evolve into the hairpin structures commonly reported to populate wall-bounded flows. This process is thought to be modulated by boundary-layer-scale secondary instability, which enhances head-up hairpin formation along quasi-streamwise transects." @default.
- W2597382602 created "2017-03-23" @default.
- W2597382602 creator A5008008876 @default.
- W2597382602 creator A5087703276 @default.
- W2597382602 date "2016-01-21" @default.
- W2597382602 modified "2023-10-01" @default.
- W2597382602 title "The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport" @default.
- W2597382602 cites W1410907832 @default.
- W2597382602 cites W1538806090 @default.
- W2597382602 cites W1553505708 @default.
- W2597382602 cites W1608763324 @default.
- W2597382602 cites W1616129390 @default.
- W2597382602 cites W1869659863 @default.
- W2597382602 cites W1964677616 @default.
- W2597382602 cites W1970270040 @default.
- W2597382602 cites W1971569867 @default.
- W2597382602 cites W1972731753 @default.
- W2597382602 cites W1974068631 @default.
- W2597382602 cites W1979176272 @default.
- W2597382602 cites W1980339839 @default.
- W2597382602 cites W1994117405 @default.
- W2597382602 cites W1994127920 @default.
- W2597382602 cites W1996605924 @default.
- W2597382602 cites W2009723821 @default.
- W2597382602 cites W2014644502 @default.
- W2597382602 cites W2016613473 @default.
- W2597382602 cites W2018811037 @default.
- W2597382602 cites W2020935364 @default.
- W2597382602 cites W2021269264 @default.
- W2597382602 cites W2021782603 @default.
- W2597382602 cites W2024066263 @default.
- W2597382602 cites W2029729989 @default.
- W2597382602 cites W2031871266 @default.
- W2597382602 cites W2047597098 @default.
- W2597382602 cites W2049247955 @default.
- W2597382602 cites W2054730011 @default.
- W2597382602 cites W2058339751 @default.
- W2597382602 cites W2062443841 @default.
- W2597382602 cites W2065089143 @default.
- W2597382602 cites W2071076579 @default.
- W2597382602 cites W2078540740 @default.
- W2597382602 cites W2082506167 @default.
- W2597382602 cites W2083140997 @default.
- W2597382602 cites W2083402385 @default.
- W2597382602 cites W2083828795 @default.
- W2597382602 cites W2084742709 @default.
- W2597382602 cites W2087788476 @default.
- W2597382602 cites W2090504076 @default.
- W2597382602 cites W2093153256 @default.
- W2597382602 cites W2096715004 @default.
- W2597382602 cites W2098823943 @default.
- W2597382602 cites W2101169678 @default.
- W2597382602 cites W2102883878 @default.
- W2597382602 cites W2111519745 @default.
- W2597382602 cites W2114485455 @default.
- W2597382602 cites W2115025195 @default.
- W2597382602 cites W2116287298 @default.
- W2597382602 cites W2122759485 @default.
- W2597382602 cites W2123712654 @default.
- W2597382602 cites W2123739111 @default.
- W2597382602 cites W2127932844 @default.
- W2597382602 cites W2131621473 @default.
- W2597382602 cites W2139068534 @default.
- W2597382602 cites W2139247058 @default.
- W2597382602 cites W2146958732 @default.
- W2597382602 cites W2146995034 @default.
- W2597382602 cites W2151900729 @default.
- W2597382602 cites W2152299060 @default.
- W2597382602 cites W2153248697 @default.
- W2597382602 cites W2156061745 @default.
- W2597382602 cites W2156242059 @default.
- W2597382602 cites W2157080561 @default.
- W2597382602 cites W2157464891 @default.
- W2597382602 cites W2157595981 @default.
- W2597382602 cites W2158082510 @default.
- W2597382602 cites W2158296088 @default.
- W2597382602 cites W2166178288 @default.
- W2597382602 cites W2168027293 @default.
- W2597382602 cites W2171731011 @default.
- W2597382602 cites W2255321180 @default.
- W2597382602 cites W3022101349 @default.
- W2597382602 cites W4231724259 @default.
- W2597382602 cites W4242814353 @default.
- W2597382602 cites W4248613488 @default.
- W2597382602 cites W4256444942 @default.
- W2597382602 cites W4298060601 @default.
- W2597382602 doi "https://doi.org/10.1017/jfm.2015.749" @default.
- W2597382602 hasPublicationYear "2016" @default.
- W2597382602 type Work @default.
- W2597382602 sameAs 2597382602 @default.
- W2597382602 citedByCount "52" @default.
- W2597382602 countsByYear W25973826022016 @default.
- W2597382602 countsByYear W25973826022017 @default.
- W2597382602 countsByYear W25973826022018 @default.
- W2597382602 countsByYear W25973826022019 @default.
- W2597382602 countsByYear W25973826022020 @default.
- W2597382602 countsByYear W25973826022021 @default.
- W2597382602 countsByYear W25973826022022 @default.