Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597452292> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2597452292 abstract "This paper extends existing Lie algebra representation theory related to Lie algebra gradings. The notion of a representation compatible with a given grading is applied to finite-dimensional representations of sl(n,C) in relation to its Z2-gradings. For representation theory of sl(n,C) the Gel’fand-Tseitlin method turned out very efficient. We show that it is not generally true that every irreducible representation can be compatibly graded." @default.
- W2597452292 created "2017-04-07" @default.
- W2597452292 creator A5053945124 @default.
- W2597452292 creator A5076119037 @default.
- W2597452292 creator A5077154457 @default.
- W2597452292 date "2010-01-05" @default.
- W2597452292 modified "2023-09-26" @default.
- W2597452292 title "On Representations of sl(n, C) Compatible with a Z2-grading" @default.
- W2597452292 doi "https://doi.org/10.14311/1261" @default.
- W2597452292 hasPublicationYear "2010" @default.
- W2597452292 type Work @default.
- W2597452292 sameAs 2597452292 @default.
- W2597452292 citedByCount "0" @default.
- W2597452292 crossrefType "journal-article" @default.
- W2597452292 hasAuthorship W2597452292A5053945124 @default.
- W2597452292 hasAuthorship W2597452292A5076119037 @default.
- W2597452292 hasAuthorship W2597452292A5077154457 @default.
- W2597452292 hasBestOaLocation W25974522921 @default.
- W2597452292 hasConcept C136119220 @default.
- W2597452292 hasConcept C14394260 @default.
- W2597452292 hasConcept C168914881 @default.
- W2597452292 hasConcept C17744445 @default.
- W2597452292 hasConcept C197273675 @default.
- W2597452292 hasConcept C199539241 @default.
- W2597452292 hasConcept C202444582 @default.
- W2597452292 hasConcept C2776359362 @default.
- W2597452292 hasConcept C33923547 @default.
- W2597452292 hasConcept C51568863 @default.
- W2597452292 hasConcept C94625758 @default.
- W2597452292 hasConceptScore W2597452292C136119220 @default.
- W2597452292 hasConceptScore W2597452292C14394260 @default.
- W2597452292 hasConceptScore W2597452292C168914881 @default.
- W2597452292 hasConceptScore W2597452292C17744445 @default.
- W2597452292 hasConceptScore W2597452292C197273675 @default.
- W2597452292 hasConceptScore W2597452292C199539241 @default.
- W2597452292 hasConceptScore W2597452292C202444582 @default.
- W2597452292 hasConceptScore W2597452292C2776359362 @default.
- W2597452292 hasConceptScore W2597452292C33923547 @default.
- W2597452292 hasConceptScore W2597452292C51568863 @default.
- W2597452292 hasConceptScore W2597452292C94625758 @default.
- W2597452292 hasLocation W25974522921 @default.
- W2597452292 hasOpenAccess W2597452292 @default.
- W2597452292 hasPrimaryLocation W25974522921 @default.
- W2597452292 hasRelatedWork W1151752942 @default.
- W2597452292 hasRelatedWork W1514232749 @default.
- W2597452292 hasRelatedWork W1592316920 @default.
- W2597452292 hasRelatedWork W1607821386 @default.
- W2597452292 hasRelatedWork W1973227305 @default.
- W2597452292 hasRelatedWork W2070025062 @default.
- W2597452292 hasRelatedWork W2070057740 @default.
- W2597452292 hasRelatedWork W2073827128 @default.
- W2597452292 hasRelatedWork W2080138725 @default.
- W2597452292 hasRelatedWork W2093360687 @default.
- W2597452292 hasRelatedWork W2125084722 @default.
- W2597452292 hasRelatedWork W2145056647 @default.
- W2597452292 hasRelatedWork W2152606014 @default.
- W2597452292 hasRelatedWork W2386765740 @default.
- W2597452292 hasRelatedWork W2483333626 @default.
- W2597452292 hasRelatedWork W2511461278 @default.
- W2597452292 hasRelatedWork W2953074287 @default.
- W2597452292 hasRelatedWork W3098421279 @default.
- W2597452292 hasRelatedWork W3098910258 @default.
- W2597452292 hasRelatedWork W928219973 @default.
- W2597452292 isParatext "false" @default.
- W2597452292 isRetracted "false" @default.
- W2597452292 magId "2597452292" @default.
- W2597452292 workType "article" @default.