Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597477172> ?p ?o ?g. }
- W2597477172 endingPage "909" @default.
- W2597477172 startingPage "897" @default.
- W2597477172 abstract "Optimization of ligand binding affinity to the target protein of interest is a primary objective in small-molecule drug discovery. Until now, the prediction of binding affinities by computational methods has not been widely applied in the drug discovery process, mainly because of its lack of accuracy and reproducibility as well as the long turnaround times required to obtain results. Herein we report on a collaborative study that compares tropomyosin receptor kinase A (TrkA) binding affinity predictions using two recently formulated fast computational approaches, namely, Enhanced Sampling of Molecular dynamics with Approximation of Continuum Solvent (ESMACS) and Thermodynamic Integration with Enhanced Sampling (TIES), to experimentally derived TrkA binding affinities for a set of Pfizer pan-Trk compounds. ESMACS gives precise and reproducible results and is applicable to highly diverse sets of compounds. It also provides detailed chemical insight into the nature of ligand-protein binding. TIES can predict and thus optimize more subtle changes in binding affinities between compounds of similar structure. Individual binding affinities were calculated in a few hours, exhibiting good correlations with the experimental data of 0.79 and 0.88 from the ESMACS and TIES approaches, respectively. The speed, level of accuracy, and precision of the calculations are such that the affinity predictions can be used to rapidly explain the effects of compound modifications on TrkA binding affinity. The methods could therefore be used as tools to guide lead optimization efforts across multiple prospective structurally enabled programs in the drug discovery setting for a wide range of compounds and targets." @default.
- W2597477172 created "2017-04-07" @default.
- W2597477172 creator A5023771680 @default.
- W2597477172 creator A5036191249 @default.
- W2597477172 creator A5066425223 @default.
- W2597477172 creator A5066453821 @default.
- W2597477172 creator A5074988517 @default.
- W2597477172 creator A5080572714 @default.
- W2597477172 creator A5081430961 @default.
- W2597477172 date "2017-04-04" @default.
- W2597477172 modified "2023-10-11" @default.
- W2597477172 title "Evaluation and Characterization of Trk Kinase Inhibitors for the Treatment of Pain: Reliable Binding Affinity Predictions from Theory and Computation" @default.
- W2597477172 cites W1191502296 @default.
- W2597477172 cites W1966509953 @default.
- W2597477172 cites W1968984443 @default.
- W2597477172 cites W1975580333 @default.
- W2597477172 cites W1984738107 @default.
- W2597477172 cites W1994174812 @default.
- W2597477172 cites W2024829861 @default.
- W2597477172 cites W2040496005 @default.
- W2597477172 cites W2042572511 @default.
- W2597477172 cites W2043383571 @default.
- W2597477172 cites W2059524959 @default.
- W2597477172 cites W2063511018 @default.
- W2597477172 cites W2097546936 @default.
- W2597477172 cites W2112005274 @default.
- W2597477172 cites W2118233996 @default.
- W2597477172 cites W2139560553 @default.
- W2597477172 cites W2144775933 @default.
- W2597477172 cites W2147993766 @default.
- W2597477172 cites W2150981663 @default.
- W2597477172 cites W2151022427 @default.
- W2597477172 cites W2154670681 @default.
- W2597477172 cites W2161605421 @default.
- W2597477172 cites W2195415732 @default.
- W2597477172 cites W2221713243 @default.
- W2597477172 cites W2345406112 @default.
- W2597477172 cites W2534324311 @default.
- W2597477172 cites W2537333062 @default.
- W2597477172 cites W2560233715 @default.
- W2597477172 cites W2564264868 @default.
- W2597477172 cites W2566391875 @default.
- W2597477172 doi "https://doi.org/10.1021/acs.jcim.6b00780" @default.
- W2597477172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28319380" @default.
- W2597477172 hasPublicationYear "2017" @default.
- W2597477172 type Work @default.
- W2597477172 sameAs 2597477172 @default.
- W2597477172 citedByCount "31" @default.
- W2597477172 countsByYear W25974771722017 @default.
- W2597477172 countsByYear W25974771722018 @default.
- W2597477172 countsByYear W25974771722019 @default.
- W2597477172 countsByYear W25974771722020 @default.
- W2597477172 countsByYear W25974771722021 @default.
- W2597477172 countsByYear W25974771722022 @default.
- W2597477172 countsByYear W25974771722023 @default.
- W2597477172 crossrefType "journal-article" @default.
- W2597477172 hasAuthorship W2597477172A5023771680 @default.
- W2597477172 hasAuthorship W2597477172A5036191249 @default.
- W2597477172 hasAuthorship W2597477172A5066425223 @default.
- W2597477172 hasAuthorship W2597477172A5066453821 @default.
- W2597477172 hasAuthorship W2597477172A5074988517 @default.
- W2597477172 hasAuthorship W2597477172A5080572714 @default.
- W2597477172 hasAuthorship W2597477172A5081430961 @default.
- W2597477172 hasBestOaLocation W25974771721 @default.
- W2597477172 hasConcept C116569031 @default.
- W2597477172 hasConcept C134139212 @default.
- W2597477172 hasConcept C147597530 @default.
- W2597477172 hasConcept C170493617 @default.
- W2597477172 hasConcept C171034665 @default.
- W2597477172 hasConcept C185592680 @default.
- W2597477172 hasConcept C204171352 @default.
- W2597477172 hasConcept C2778423431 @default.
- W2597477172 hasConcept C2780283098 @default.
- W2597477172 hasConcept C3018795828 @default.
- W2597477172 hasConcept C55493867 @default.
- W2597477172 hasConcept C70721500 @default.
- W2597477172 hasConcept C71240020 @default.
- W2597477172 hasConcept C74187038 @default.
- W2597477172 hasConcept C86803240 @default.
- W2597477172 hasConcept C92020748 @default.
- W2597477172 hasConceptScore W2597477172C116569031 @default.
- W2597477172 hasConceptScore W2597477172C134139212 @default.
- W2597477172 hasConceptScore W2597477172C147597530 @default.
- W2597477172 hasConceptScore W2597477172C170493617 @default.
- W2597477172 hasConceptScore W2597477172C171034665 @default.
- W2597477172 hasConceptScore W2597477172C185592680 @default.
- W2597477172 hasConceptScore W2597477172C204171352 @default.
- W2597477172 hasConceptScore W2597477172C2778423431 @default.
- W2597477172 hasConceptScore W2597477172C2780283098 @default.
- W2597477172 hasConceptScore W2597477172C3018795828 @default.
- W2597477172 hasConceptScore W2597477172C55493867 @default.
- W2597477172 hasConceptScore W2597477172C70721500 @default.
- W2597477172 hasConceptScore W2597477172C71240020 @default.
- W2597477172 hasConceptScore W2597477172C74187038 @default.
- W2597477172 hasConceptScore W2597477172C86803240 @default.
- W2597477172 hasConceptScore W2597477172C92020748 @default.
- W2597477172 hasFunder F4320332753 @default.
- W2597477172 hasFunder F4320332999 @default.