Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597496502> ?p ?o ?g. }
- W2597496502 abstract "One goal of structural biology is to understand how a protein's 3-dimensional conformation determines its capacity to interact with potential ligands. In the case of small chemical ligands, deconstructing a static protein-ligand complex into its constituent atom-atom interactions is typically sufficient to rapidly predict ligand affinity with high accuracy (>70% correlation between predicted and experimentally-determined affinity), a fact that is exploited to support structure-based drug design. We recently found that protein-DNA/RNA affinity can also be predicted with high accuracy using extensions of existing techniques, but protein-protein affinity could not be predicted with >60% correlation, even when the protein-protein complex was available.X-ray and NMR structures of protein-protein complexes, their associated binding affinities and experimental conditions were obtained from different binding affinity and structural databases. Statistical models were implemented using a generalized linear model framework, including the experimental conditions as new model features. We evaluated the potential for new features to improve affinity prediction models by calculating the Pearson correlation between predicted and experimental binding affinities on the training and test data after model fitting and after cross-validation. Differences in accuracy were assessed using two-sample t test and nonparametric Mann-Whitney U test.Here we evaluate a range of potential factors that may interfere with accurate protein-protein affinity prediction. We find that X-ray crystal resolution has the strongest single effect on protein-protein affinity prediction. Limiting our analyses to only high-resolution complexes (≤2.5 Å) increased the correlation between predicted and experimental affinity from 54 to 68% (p = 4.32x10-3). In addition, incorporating information on the experimental conditions under which affinities were measured (pH, temperature and binding assay) had significant effects on prediction accuracy. We also highlight a number of potential errors in large structure-affinity databases, which could affect both model training and accuracy assessment.The results suggest that the accuracy of statistical models for protein-protein affinity prediction may be limited by the information present in databases used to train new models. Improving our capacity to integrate large-scale structural and functional information may be required to substantively advance our understanding of the general principles by which a protein's structure determines its function." @default.
- W2597496502 created "2017-04-07" @default.
- W2597496502 creator A5044545913 @default.
- W2597496502 creator A5071679223 @default.
- W2597496502 date "2017-03-01" @default.
- W2597496502 modified "2023-10-14" @default.
- W2597496502 title "Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data" @default.
- W2597496502 cites W1591760165 @default.
- W2597496502 cites W1605578858 @default.
- W2597496502 cites W1803102843 @default.
- W2597496502 cites W1915466131 @default.
- W2597496502 cites W1915490970 @default.
- W2597496502 cites W1969902766 @default.
- W2597496502 cites W197436581 @default.
- W2597496502 cites W1977056833 @default.
- W2597496502 cites W1978545297 @default.
- W2597496502 cites W1980177485 @default.
- W2597496502 cites W1980674913 @default.
- W2597496502 cites W1981791873 @default.
- W2597496502 cites W1984021058 @default.
- W2597496502 cites W1986009775 @default.
- W2597496502 cites W1986653693 @default.
- W2597496502 cites W1987133757 @default.
- W2597496502 cites W1990633445 @default.
- W2597496502 cites W1993046136 @default.
- W2597496502 cites W1993403967 @default.
- W2597496502 cites W1998000033 @default.
- W2597496502 cites W20004359 @default.
- W2597496502 cites W2006052651 @default.
- W2597496502 cites W2006475108 @default.
- W2597496502 cites W2007943671 @default.
- W2597496502 cites W2009908553 @default.
- W2597496502 cites W2015044035 @default.
- W2597496502 cites W2016755296 @default.
- W2597496502 cites W2017259077 @default.
- W2597496502 cites W2019135742 @default.
- W2597496502 cites W2028338612 @default.
- W2597496502 cites W2032299291 @default.
- W2597496502 cites W2032804939 @default.
- W2597496502 cites W2033872649 @default.
- W2597496502 cites W2034655166 @default.
- W2597496502 cites W2040615655 @default.
- W2597496502 cites W2043157066 @default.
- W2597496502 cites W2047886533 @default.
- W2597496502 cites W2048006637 @default.
- W2597496502 cites W2049262563 @default.
- W2597496502 cites W2053538195 @default.
- W2597496502 cites W2071884450 @default.
- W2597496502 cites W2076022099 @default.
- W2597496502 cites W2076493317 @default.
- W2597496502 cites W2080500592 @default.
- W2597496502 cites W2081041814 @default.
- W2597496502 cites W2083254788 @default.
- W2597496502 cites W2087574732 @default.
- W2597496502 cites W2088933990 @default.
- W2597496502 cites W2092048230 @default.
- W2597496502 cites W2094087249 @default.
- W2597496502 cites W2096864392 @default.
- W2597496502 cites W2096873892 @default.
- W2597496502 cites W2097898123 @default.
- W2597496502 cites W2099861795 @default.
- W2597496502 cites W2106612397 @default.
- W2597496502 cites W2110720709 @default.
- W2597496502 cites W2118507670 @default.
- W2597496502 cites W2122287089 @default.
- W2597496502 cites W2127039209 @default.
- W2597496502 cites W2128332459 @default.
- W2597496502 cites W2133187258 @default.
- W2597496502 cites W2138063358 @default.
- W2597496502 cites W2157122545 @default.
- W2597496502 cites W2157273785 @default.
- W2597496502 cites W2159006106 @default.
- W2597496502 cites W2161336914 @default.
- W2597496502 cites W2164431990 @default.
- W2597496502 cites W2165011009 @default.
- W2597496502 cites W2170107397 @default.
- W2597496502 cites W2171656814 @default.
- W2597496502 cites W36209744 @default.
- W2597496502 cites W4212865600 @default.
- W2597496502 doi "https://doi.org/10.1186/s12859-017-1533-z" @default.
- W2597496502 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5374557" @default.
- W2597496502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28361672" @default.
- W2597496502 hasPublicationYear "2017" @default.
- W2597496502 type Work @default.
- W2597496502 sameAs 2597496502 @default.
- W2597496502 citedByCount "13" @default.
- W2597496502 countsByYear W25974965022017 @default.
- W2597496502 countsByYear W25974965022018 @default.
- W2597496502 countsByYear W25974965022021 @default.
- W2597496502 countsByYear W25974965022022 @default.
- W2597496502 crossrefType "journal-article" @default.
- W2597496502 hasAuthorship W2597496502A5044545913 @default.
- W2597496502 hasAuthorship W2597496502A5071679223 @default.
- W2597496502 hasBestOaLocation W25974965021 @default.
- W2597496502 hasConcept C104317684 @default.
- W2597496502 hasConcept C109095088 @default.
- W2597496502 hasConcept C116569031 @default.
- W2597496502 hasConcept C117220453 @default.
- W2597496502 hasConcept C11804247 @default.
- W2597496502 hasConcept C119145174 @default.