Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597535331> ?p ?o ?g. }
- W2597535331 endingPage "3283" @default.
- W2597535331 startingPage "3277" @default.
- W2597535331 abstract "Exploitation of efficient water oxidation catalysts with cost effectiveness and high activity is a prerequisite to enable water splitting as an alternative pathway for a renewable energy source. Silicon has the potential for high-efficiency oxygen evolution reaction (OER). However, an important factor, which is the doping concentration of the silicon influence on the OER performance, has not been studied. Our results show that the performance of the silicon photoanode is significantly influenced by its resistivity, which is directly related to the doping concentration. In combination with ultrathin NiFe alloy nanoflakes (2 nm thick) deposited by the electron beam evaporation method, a NixFe(1–x)/TiO2/n-Si photoanode for water oxidation has been demonstrated. Our results show that the prepared Ni80Fe20/TiO2/n-Si photoanode with Si resistivity of 0.5 Ω·cm–1 exhibits high catalytic performance with a low onset potential of 1.06 V versus RHE (η0 = −0.17 V), which are comparable to the state-of-the-art photoanodes using Ir or Ru as a catalyst. In addition, the photocurrent density at the reversible potential for water oxidation (1.23 V versus RHE) is around 21.5 mA·cm–2, which is higher than most of the metal/TiO2/n-Si photoanodes. Therefore, our Ni80Fe20/TiO2/n-Si (0.5) photoanode shows great potential to replace precious metals for highly efficient large-scale water splitting." @default.
- W2597535331 created "2017-04-07" @default.
- W2597535331 creator A5012677271 @default.
- W2597535331 creator A5013963899 @default.
- W2597535331 creator A5047225762 @default.
- W2597535331 creator A5051752937 @default.
- W2597535331 creator A5077918661 @default.
- W2597535331 date "2017-04-06" @default.
- W2597535331 modified "2023-09-26" @default.
- W2597535331 title "Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction" @default.
- W2597535331 cites W1455879371 @default.
- W2597535331 cites W1785079692 @default.
- W2597535331 cites W1792658768 @default.
- W2597535331 cites W1868286378 @default.
- W2597535331 cites W1963597613 @default.
- W2597535331 cites W1971113415 @default.
- W2597535331 cites W1980880762 @default.
- W2597535331 cites W1985240449 @default.
- W2597535331 cites W1985316960 @default.
- W2597535331 cites W1987047127 @default.
- W2597535331 cites W1989500990 @default.
- W2597535331 cites W1992258332 @default.
- W2597535331 cites W1994260523 @default.
- W2597535331 cites W1999912925 @default.
- W2597535331 cites W2009904975 @default.
- W2597535331 cites W2011680606 @default.
- W2597535331 cites W2011685920 @default.
- W2597535331 cites W2015127275 @default.
- W2597535331 cites W2015855251 @default.
- W2597535331 cites W2020007931 @default.
- W2597535331 cites W2037680640 @default.
- W2597535331 cites W2045153748 @default.
- W2597535331 cites W2046435382 @default.
- W2597535331 cites W2054167314 @default.
- W2597535331 cites W2055134456 @default.
- W2597535331 cites W2065751695 @default.
- W2597535331 cites W2066151171 @default.
- W2597535331 cites W2066613146 @default.
- W2597535331 cites W2078734431 @default.
- W2597535331 cites W2142841029 @default.
- W2597535331 cites W2146349866 @default.
- W2597535331 cites W2159069928 @default.
- W2597535331 cites W2170670288 @default.
- W2597535331 cites W2177564612 @default.
- W2597535331 cites W2235118003 @default.
- W2597535331 cites W2237846741 @default.
- W2597535331 cites W2255802039 @default.
- W2597535331 cites W2265712721 @default.
- W2597535331 cites W2312725582 @default.
- W2597535331 cites W2316358103 @default.
- W2597535331 cites W2323340717 @default.
- W2597535331 cites W2328832782 @default.
- W2597535331 cites W2437261131 @default.
- W2597535331 cites W2555720385 @default.
- W2597535331 doi "https://doi.org/10.1021/acscatal.7b00507" @default.
- W2597535331 hasPublicationYear "2017" @default.
- W2597535331 type Work @default.
- W2597535331 sameAs 2597535331 @default.
- W2597535331 citedByCount "33" @default.
- W2597535331 countsByYear W25975353312017 @default.
- W2597535331 countsByYear W25975353312018 @default.
- W2597535331 countsByYear W25975353312019 @default.
- W2597535331 countsByYear W25975353312020 @default.
- W2597535331 countsByYear W25975353312021 @default.
- W2597535331 countsByYear W25975353312022 @default.
- W2597535331 countsByYear W25975353312023 @default.
- W2597535331 crossrefType "journal-article" @default.
- W2597535331 hasAuthorship W2597535331A5012677271 @default.
- W2597535331 hasAuthorship W2597535331A5013963899 @default.
- W2597535331 hasAuthorship W2597535331A5047225762 @default.
- W2597535331 hasAuthorship W2597535331A5051752937 @default.
- W2597535331 hasAuthorship W2597535331A5077918661 @default.
- W2597535331 hasConcept C119599485 @default.
- W2597535331 hasConcept C121332964 @default.
- W2597535331 hasConcept C127413603 @default.
- W2597535331 hasConcept C135473242 @default.
- W2597535331 hasConcept C147789679 @default.
- W2597535331 hasConcept C161790260 @default.
- W2597535331 hasConcept C171250308 @default.
- W2597535331 hasConcept C17525397 @default.
- W2597535331 hasConcept C185592680 @default.
- W2597535331 hasConcept C191897082 @default.
- W2597535331 hasConcept C192562407 @default.
- W2597535331 hasConcept C2779845233 @default.
- W2597535331 hasConcept C2780026712 @default.
- W2597535331 hasConcept C35590869 @default.
- W2597535331 hasConcept C42360764 @default.
- W2597535331 hasConcept C49040817 @default.
- W2597535331 hasConcept C52859227 @default.
- W2597535331 hasConcept C544956773 @default.
- W2597535331 hasConcept C55493867 @default.
- W2597535331 hasConcept C57863236 @default.
- W2597535331 hasConcept C61441594 @default.
- W2597535331 hasConcept C65165184 @default.
- W2597535331 hasConcept C69990965 @default.
- W2597535331 hasConcept C97355855 @default.
- W2597535331 hasConceptScore W2597535331C119599485 @default.
- W2597535331 hasConceptScore W2597535331C121332964 @default.