Matches in SemOpenAlex for { <https://semopenalex.org/work/W2597866042> ?p ?o ?g. }
- W2597866042 endingPage "5280" @default.
- W2597866042 startingPage "5271" @default.
- W2597866042 abstract "The key challenge for household load forecasting lies in the high volatility and uncertainty of load profiles. Traditional methods tend to avoid such uncertainty by load aggregation (to offset uncertainties), customer classification (to cluster uncertainties) and spectral analysis (to filter out uncertainties). This paper, for the first time, aims to directly learn the uncertainty by applying a new breed of machine learning algorithms—deep learning. However, simply adding layers in neural networks will cap the forecasting performance due to the occurrence of over-fitting. A novel pooling-based deep recurrent neural network is proposed in this paper which batches a group of customers’ load profiles into a pool of inputs. Essentially the model could address the over-fitting issue by increasing data diversity and volume. This paper reports the first attempts to develop a bespoke deep learning application for household load forecasting and achieved preliminary success. The developed method is implemented on Tensorflow deep learning platform and tested on 920 smart metered customers from Ireland. Compared with the state-of-the-art techniques in household load forecasting, the proposed method outperforms ARIMA by 19.5%, SVR by 13.1% and classical deep RNN by 6.5% in terms of RMSE." @default.
- W2597866042 created "2017-04-07" @default.
- W2597866042 creator A5023110197 @default.
- W2597866042 creator A5059372397 @default.
- W2597866042 creator A5080308668 @default.
- W2597866042 date "2018-09-01" @default.
- W2597866042 modified "2023-10-11" @default.
- W2597866042 title "Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN" @default.
- W2597866042 cites W1495476169 @default.
- W2597866042 cites W1499220949 @default.
- W2597866042 cites W1964984358 @default.
- W2597866042 cites W1966550988 @default.
- W2597866042 cites W1974712709 @default.
- W2597866042 cites W1995341919 @default.
- W2597866042 cites W2008084603 @default.
- W2597866042 cites W2017068901 @default.
- W2597866042 cites W2019949418 @default.
- W2597866042 cites W2030563576 @default.
- W2597866042 cites W2032161710 @default.
- W2597866042 cites W2046185460 @default.
- W2597866042 cites W2046589863 @default.
- W2597866042 cites W2067328650 @default.
- W2597866042 cites W2078019988 @default.
- W2597866042 cites W2088597453 @default.
- W2597866042 cites W2094053746 @default.
- W2597866042 cites W2122723365 @default.
- W2597866042 cites W2125848133 @default.
- W2597866042 cites W2136922672 @default.
- W2597866042 cites W2137983211 @default.
- W2597866042 cites W2143612262 @default.
- W2597866042 cites W2172174166 @default.
- W2597866042 cites W2209508536 @default.
- W2597866042 cites W2213612645 @default.
- W2597866042 cites W2220560459 @default.
- W2597866042 cites W2257979135 @default.
- W2597866042 cites W2275088575 @default.
- W2597866042 cites W2296521892 @default.
- W2597866042 cites W2313169588 @default.
- W2597866042 cites W2343586331 @default.
- W2597866042 cites W769431358 @default.
- W2597866042 cites W2081770709 @default.
- W2597866042 doi "https://doi.org/10.1109/tsg.2017.2686012" @default.
- W2597866042 hasPublicationYear "2018" @default.
- W2597866042 type Work @default.
- W2597866042 sameAs 2597866042 @default.
- W2597866042 citedByCount "647" @default.
- W2597866042 countsByYear W25978660422017 @default.
- W2597866042 countsByYear W25978660422018 @default.
- W2597866042 countsByYear W25978660422019 @default.
- W2597866042 countsByYear W25978660422020 @default.
- W2597866042 countsByYear W25978660422021 @default.
- W2597866042 countsByYear W25978660422022 @default.
- W2597866042 countsByYear W25978660422023 @default.
- W2597866042 crossrefType "journal-article" @default.
- W2597866042 hasAuthorship W2597866042A5023110197 @default.
- W2597866042 hasAuthorship W2597866042A5059372397 @default.
- W2597866042 hasAuthorship W2597866042A5080308668 @default.
- W2597866042 hasBestOaLocation W25978660422 @default.
- W2597866042 hasConcept C108583219 @default.
- W2597866042 hasConcept C119857082 @default.
- W2597866042 hasConcept C127413603 @default.
- W2597866042 hasConcept C147168706 @default.
- W2597866042 hasConcept C149782125 @default.
- W2597866042 hasConcept C154945302 @default.
- W2597866042 hasConcept C162324750 @default.
- W2597866042 hasConcept C163068380 @default.
- W2597866042 hasConcept C193809577 @default.
- W2597866042 hasConcept C41008148 @default.
- W2597866042 hasConcept C42475967 @default.
- W2597866042 hasConcept C50644808 @default.
- W2597866042 hasConcept C70437156 @default.
- W2597866042 hasConceptScore W2597866042C108583219 @default.
- W2597866042 hasConceptScore W2597866042C119857082 @default.
- W2597866042 hasConceptScore W2597866042C127413603 @default.
- W2597866042 hasConceptScore W2597866042C147168706 @default.
- W2597866042 hasConceptScore W2597866042C149782125 @default.
- W2597866042 hasConceptScore W2597866042C154945302 @default.
- W2597866042 hasConceptScore W2597866042C162324750 @default.
- W2597866042 hasConceptScore W2597866042C163068380 @default.
- W2597866042 hasConceptScore W2597866042C193809577 @default.
- W2597866042 hasConceptScore W2597866042C41008148 @default.
- W2597866042 hasConceptScore W2597866042C42475967 @default.
- W2597866042 hasConceptScore W2597866042C50644808 @default.
- W2597866042 hasConceptScore W2597866042C70437156 @default.
- W2597866042 hasIssue "5" @default.
- W2597866042 hasLocation W25978660421 @default.
- W2597866042 hasLocation W25978660422 @default.
- W2597866042 hasOpenAccess W2597866042 @default.
- W2597866042 hasPrimaryLocation W25978660421 @default.
- W2597866042 hasRelatedWork W2597866042 @default.
- W2597866042 hasRelatedWork W2793022090 @default.
- W2597866042 hasRelatedWork W2902302341 @default.
- W2597866042 hasRelatedWork W2919358988 @default.
- W2597866042 hasRelatedWork W3192794374 @default.
- W2597866042 hasRelatedWork W3211546796 @default.
- W2597866042 hasRelatedWork W4281386417 @default.
- W2597866042 hasRelatedWork W4296990061 @default.
- W2597866042 hasRelatedWork W4298168912 @default.