Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598045648> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2598045648 abstract "Image fusion is an important research topic in many related areas such as computer vision, robotics, and medical imaging, etc. . Multi-sensor image fusion is the process of combining relevant information from several images into one image Multi-sensor image fusion is the process of combining relevant information from several images into one image. The final output image can provide more information than any of the single images. Image fusion, as opposed to strict data fusion, requires data representing every point on a surface or in space to be fused, rather than selected points of interest. There are numerous medical examples presented of image fusion for registering and combining magnetic resonance (MR) and computer tomography (CT) into composites to aid surgery. In each of these examples, there are numerous opportunities for image fusion success to help in decision-making and diagnostics. It also contains various potential applications for medical data collection and diagnosis. It assists physicians in extracting features that may not be normally visible in images produced by different modalities. The final output image can provide more information than any of the single there are surveillance examples of image fusion for combining polariometric synthetic aperture radar (SAR) and hyper spectral (HSI) data.. Finally, a third field is industrial applications that include non destructive (NDE) evaluation techniques to inspect parts. A variety of techniques have been developed for fuse the images, broadly classified into the spatial and spectral methods. Image fusion algorithms can be categorized into different levels: low, middle, and high; or pixel, feature, and symbolic levels." @default.
- W2598045648 created "2017-04-07" @default.
- W2598045648 creator A5051900462 @default.
- W2598045648 creator A5056021118 @default.
- W2598045648 date "2010-01-01" @default.
- W2598045648 modified "2023-09-26" @default.
- W2598045648 title "Implementation of Image Fusion Algorithm Using 2gcurvelet Transforms" @default.
- W2598045648 hasPublicationYear "2010" @default.
- W2598045648 type Work @default.
- W2598045648 sameAs 2598045648 @default.
- W2598045648 citedByCount "2" @default.
- W2598045648 countsByYear W25980456482013 @default.
- W2598045648 countsByYear W25980456482015 @default.
- W2598045648 crossrefType "journal-article" @default.
- W2598045648 hasAuthorship W2598045648A5051900462 @default.
- W2598045648 hasAuthorship W2598045648A5056021118 @default.
- W2598045648 hasConcept C111919701 @default.
- W2598045648 hasConcept C115961682 @default.
- W2598045648 hasConcept C119599485 @default.
- W2598045648 hasConcept C126422989 @default.
- W2598045648 hasConcept C127413603 @default.
- W2598045648 hasConcept C138885662 @default.
- W2598045648 hasConcept C141353440 @default.
- W2598045648 hasConcept C154945302 @default.
- W2598045648 hasConcept C160633673 @default.
- W2598045648 hasConcept C166704113 @default.
- W2598045648 hasConcept C2776401178 @default.
- W2598045648 hasConcept C31601959 @default.
- W2598045648 hasConcept C31972630 @default.
- W2598045648 hasConcept C33954974 @default.
- W2598045648 hasConcept C41008148 @default.
- W2598045648 hasConcept C41895202 @default.
- W2598045648 hasConcept C69744172 @default.
- W2598045648 hasConcept C9417928 @default.
- W2598045648 hasConcept C98045186 @default.
- W2598045648 hasConceptScore W2598045648C111919701 @default.
- W2598045648 hasConceptScore W2598045648C115961682 @default.
- W2598045648 hasConceptScore W2598045648C119599485 @default.
- W2598045648 hasConceptScore W2598045648C126422989 @default.
- W2598045648 hasConceptScore W2598045648C127413603 @default.
- W2598045648 hasConceptScore W2598045648C138885662 @default.
- W2598045648 hasConceptScore W2598045648C141353440 @default.
- W2598045648 hasConceptScore W2598045648C154945302 @default.
- W2598045648 hasConceptScore W2598045648C160633673 @default.
- W2598045648 hasConceptScore W2598045648C166704113 @default.
- W2598045648 hasConceptScore W2598045648C2776401178 @default.
- W2598045648 hasConceptScore W2598045648C31601959 @default.
- W2598045648 hasConceptScore W2598045648C31972630 @default.
- W2598045648 hasConceptScore W2598045648C33954974 @default.
- W2598045648 hasConceptScore W2598045648C41008148 @default.
- W2598045648 hasConceptScore W2598045648C41895202 @default.
- W2598045648 hasConceptScore W2598045648C69744172 @default.
- W2598045648 hasConceptScore W2598045648C9417928 @default.
- W2598045648 hasConceptScore W2598045648C98045186 @default.
- W2598045648 hasIssue "4" @default.
- W2598045648 hasLocation W25980456481 @default.
- W2598045648 hasOpenAccess W2598045648 @default.
- W2598045648 hasPrimaryLocation W25980456481 @default.
- W2598045648 hasRelatedWork W1466498191 @default.
- W2598045648 hasRelatedWork W1488435425 @default.
- W2598045648 hasRelatedWork W1527947507 @default.
- W2598045648 hasRelatedWork W1984035687 @default.
- W2598045648 hasRelatedWork W2115022293 @default.
- W2598045648 hasRelatedWork W2125490154 @default.
- W2598045648 hasRelatedWork W2185959306 @default.
- W2598045648 hasRelatedWork W2326951040 @default.
- W2598045648 hasRelatedWork W2335721403 @default.
- W2598045648 hasRelatedWork W2338537589 @default.
- W2598045648 hasRelatedWork W2386532572 @default.
- W2598045648 hasRelatedWork W2610168844 @default.
- W2598045648 hasRelatedWork W2786543667 @default.
- W2598045648 hasRelatedWork W2811293692 @default.
- W2598045648 hasRelatedWork W3006630499 @default.
- W2598045648 hasRelatedWork W3129675108 @default.
- W2598045648 hasRelatedWork W2186477669 @default.
- W2598045648 hasRelatedWork W2313463016 @default.
- W2598045648 hasRelatedWork W2402741712 @default.
- W2598045648 hasRelatedWork W2590947057 @default.
- W2598045648 hasVolume "2" @default.
- W2598045648 isParatext "false" @default.
- W2598045648 isRetracted "false" @default.
- W2598045648 magId "2598045648" @default.
- W2598045648 workType "article" @default.