Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598271700> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2598271700 abstract "Given a set of documents and an input query that is expressed using natural language, the problem of document search is retrieving all relevant documents ordered by the degree of relevance. Semantic document search fetches not only documents that contain words from the input query, but also documents that are semantically relevant. For example, the query friendly pets will consider documents that contain the words dog and cat, among others. One way to implement semantic search is to use a probabilistic graph in which the input query is connected to the documents through paths that contain semantically similar words and phrases, where we use WordNet to initially populate the graph. Each edge in the graph is labeled with the conditional probability that the destination node is relevant given that the source node is relevant. Our semantic document search algorithm works in two phases. In the first phase, we find all documents in the graph that are close to the input query and create a bounded subgraph that includes the query, the found documents, and the paths that connect them. In the second phase, we simulate multiple random walks. Each random walk starts at the input query and continues until a document is reached, a jump outside the bounding subgraph is made, or the number of allowed jumps is exhausted. This allows us to rank the documents based on the number of random walks that terminated in them. We experimentally validated the algorithm on the Cranfield benchmark that contains 1400 documents and 225 natural language queries. We show that we achieve higher value for the mean average precision (MAP) measure than a keywords-based search algorithm and a previously published algorithm that relies on a variation of the probabilistic graph." @default.
- W2598271700 created "2017-04-07" @default.
- W2598271700 creator A5016802004 @default.
- W2598271700 date "2017-01-01" @default.
- W2598271700 modified "2023-10-05" @default.
- W2598271700 title "Implementing Semantic Document Search Using a Bounded Random Walk in a Probabilistic Graph" @default.
- W2598271700 cites W106978441 @default.
- W2598271700 cites W1483658097 @default.
- W2598271700 cites W1485918728 @default.
- W2598271700 cites W1552847225 @default.
- W2598271700 cites W1586685072 @default.
- W2598271700 cites W1588490261 @default.
- W2598271700 cites W1592696684 @default.
- W2598271700 cites W1966214413 @default.
- W2598271700 cites W1977970897 @default.
- W2598271700 cites W1980318031 @default.
- W2598271700 cites W1980409190 @default.
- W2598271700 cites W1984061923 @default.
- W2598271700 cites W1984681168 @default.
- W2598271700 cites W1995957464 @default.
- W2598271700 cites W2031999958 @default.
- W2598271700 cites W2061954183 @default.
- W2598271700 cites W2084662183 @default.
- W2598271700 cites W2117831564 @default.
- W2598271700 cites W2120292386 @default.
- W2598271700 cites W2139621016 @default.
- W2598271700 cites W2143666849 @default.
- W2598271700 cites W2144211451 @default.
- W2598271700 cites W2147152072 @default.
- W2598271700 cites W2149801387 @default.
- W2598271700 cites W2158997610 @default.
- W2598271700 cites W2165971205 @default.
- W2598271700 cites W2168384920 @default.
- W2598271700 cites W2168469656 @default.
- W2598271700 cites W2170741935 @default.
- W2598271700 cites W2296157284 @default.
- W2598271700 cites W2463751733 @default.
- W2598271700 cites W2492932054 @default.
- W2598271700 cites W80923161 @default.
- W2598271700 cites W89857650 @default.
- W2598271700 doi "https://doi.org/10.1109/icsc.2017.13" @default.
- W2598271700 hasPublicationYear "2017" @default.
- W2598271700 type Work @default.
- W2598271700 sameAs 2598271700 @default.
- W2598271700 citedByCount "0" @default.
- W2598271700 crossrefType "proceedings-article" @default.
- W2598271700 hasAuthorship W2598271700A5016802004 @default.
- W2598271700 hasBestOaLocation W25982717002 @default.
- W2598271700 hasConcept C105795698 @default.
- W2598271700 hasConcept C121194460 @default.
- W2598271700 hasConcept C132525143 @default.
- W2598271700 hasConcept C134306372 @default.
- W2598271700 hasConcept C154945302 @default.
- W2598271700 hasConcept C23123220 @default.
- W2598271700 hasConcept C33923547 @default.
- W2598271700 hasConcept C34388435 @default.
- W2598271700 hasConcept C41008148 @default.
- W2598271700 hasConcept C49937458 @default.
- W2598271700 hasConcept C80444323 @default.
- W2598271700 hasConceptScore W2598271700C105795698 @default.
- W2598271700 hasConceptScore W2598271700C121194460 @default.
- W2598271700 hasConceptScore W2598271700C132525143 @default.
- W2598271700 hasConceptScore W2598271700C134306372 @default.
- W2598271700 hasConceptScore W2598271700C154945302 @default.
- W2598271700 hasConceptScore W2598271700C23123220 @default.
- W2598271700 hasConceptScore W2598271700C33923547 @default.
- W2598271700 hasConceptScore W2598271700C34388435 @default.
- W2598271700 hasConceptScore W2598271700C41008148 @default.
- W2598271700 hasConceptScore W2598271700C49937458 @default.
- W2598271700 hasConceptScore W2598271700C80444323 @default.
- W2598271700 hasLocation W25982717001 @default.
- W2598271700 hasLocation W25982717002 @default.
- W2598271700 hasOpenAccess W2598271700 @default.
- W2598271700 hasPrimaryLocation W25982717001 @default.
- W2598271700 hasRelatedWork W2056986389 @default.
- W2598271700 hasRelatedWork W2086064646 @default.
- W2598271700 hasRelatedWork W2115485936 @default.
- W2598271700 hasRelatedWork W2119135658 @default.
- W2598271700 hasRelatedWork W2357241418 @default.
- W2598271700 hasRelatedWork W2792377126 @default.
- W2598271700 hasRelatedWork W2998071946 @default.
- W2598271700 hasRelatedWork W3022131925 @default.
- W2598271700 hasRelatedWork W4210836535 @default.
- W2598271700 hasRelatedWork W4290792893 @default.
- W2598271700 isParatext "false" @default.
- W2598271700 isRetracted "false" @default.
- W2598271700 magId "2598271700" @default.
- W2598271700 workType "article" @default.