Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598492571> ?p ?o ?g. }
- W2598492571 endingPage "626" @default.
- W2598492571 startingPage "612" @default.
- W2598492571 abstract "This paper introduces the popular sparse representation method into the classical fuzzy c-means clustering algorithm, and presents a novel fuzzy clustering algorithm, called fuzzy double c-means based on sparse self-representation (FDCM_SSR). The major characteristic of FDCM_SSR is that it can simultaneously address two datasets with different dimensions, and has two kinds of corresponding cluster centers. The first one is the basic feature set that represents the basic physical property of each sample itself. The second one is learned from the basic feature set by solving a spare self-representation model, referred to as discriminant feature set, which reflects the global structure of the sample set. The spare self-representation model employs dataset itself as dictionary of sparse representation. It has good category distinguishing ability, noise robustness, and data-adaptiveness, which enhance the clustering and generalization performance of FDCM_SSR. Experiments on different datasets and images show that FDCM_SSR is more competitive than other state-of-the-art fuzzy clustering algorithms." @default.
- W2598492571 created "2017-04-07" @default.
- W2598492571 creator A5032503755 @default.
- W2598492571 creator A5050630882 @default.
- W2598492571 creator A5080902896 @default.
- W2598492571 creator A5085025467 @default.
- W2598492571 date "2018-04-01" @default.
- W2598492571 modified "2023-10-04" @default.
- W2598492571 title "Fuzzy Double C-Means Clustering Based on Sparse Self-Representation" @default.
- W2598492571 cites W1589895371 @default.
- W2598492571 cites W1793466594 @default.
- W2598492571 cites W1965126626 @default.
- W2598492571 cites W1970836680 @default.
- W2598492571 cites W1992147426 @default.
- W2598492571 cites W1995450389 @default.
- W2598492571 cites W1995812186 @default.
- W2598492571 cites W1996129074 @default.
- W2598492571 cites W1996800636 @default.
- W2598492571 cites W1997170591 @default.
- W2598492571 cites W2003217181 @default.
- W2598492571 cites W2020616521 @default.
- W2598492571 cites W2030754587 @default.
- W2598492571 cites W2039304072 @default.
- W2598492571 cites W2045079045 @default.
- W2598492571 cites W2052948788 @default.
- W2598492571 cites W2065691025 @default.
- W2598492571 cites W2067191022 @default.
- W2598492571 cites W2069959554 @default.
- W2598492571 cites W2077309078 @default.
- W2598492571 cites W2081549451 @default.
- W2598492571 cites W2082161064 @default.
- W2598492571 cites W2098777834 @default.
- W2598492571 cites W2100556411 @default.
- W2598492571 cites W2100580765 @default.
- W2598492571 cites W2107214962 @default.
- W2598492571 cites W2108323654 @default.
- W2598492571 cites W2108859253 @default.
- W2598492571 cites W2115242586 @default.
- W2598492571 cites W2119531662 @default.
- W2598492571 cites W2120688485 @default.
- W2598492571 cites W2125836384 @default.
- W2598492571 cites W2129812935 @default.
- W2598492571 cites W2138762030 @default.
- W2598492571 cites W2152709458 @default.
- W2598492571 cites W2156145910 @default.
- W2598492571 cites W2160547390 @default.
- W2598492571 cites W2164500538 @default.
- W2598492571 cites W2165012164 @default.
- W2598492571 cites W2167428023 @default.
- W2598492571 cites W2167638481 @default.
- W2598492571 cites W2291071080 @default.
- W2598492571 cites W2312464733 @default.
- W2598492571 cites W2344301817 @default.
- W2598492571 cites W2344932324 @default.
- W2598492571 cites W2560587063 @default.
- W2598492571 cites W4211007335 @default.
- W2598492571 doi "https://doi.org/10.1109/tfuzz.2017.2686804" @default.
- W2598492571 hasPublicationYear "2018" @default.
- W2598492571 type Work @default.
- W2598492571 sameAs 2598492571 @default.
- W2598492571 citedByCount "57" @default.
- W2598492571 countsByYear W25984925712018 @default.
- W2598492571 countsByYear W25984925712019 @default.
- W2598492571 countsByYear W25984925712020 @default.
- W2598492571 countsByYear W25984925712021 @default.
- W2598492571 countsByYear W25984925712022 @default.
- W2598492571 countsByYear W25984925712023 @default.
- W2598492571 crossrefType "journal-article" @default.
- W2598492571 hasAuthorship W2598492571A5032503755 @default.
- W2598492571 hasAuthorship W2598492571A5050630882 @default.
- W2598492571 hasAuthorship W2598492571A5080902896 @default.
- W2598492571 hasAuthorship W2598492571A5085025467 @default.
- W2598492571 hasConcept C104047586 @default.
- W2598492571 hasConcept C104317684 @default.
- W2598492571 hasConcept C124066611 @default.
- W2598492571 hasConcept C124101348 @default.
- W2598492571 hasConcept C138885662 @default.
- W2598492571 hasConcept C153180895 @default.
- W2598492571 hasConcept C154945302 @default.
- W2598492571 hasConcept C17212007 @default.
- W2598492571 hasConcept C17744445 @default.
- W2598492571 hasConcept C185592680 @default.
- W2598492571 hasConcept C199539241 @default.
- W2598492571 hasConcept C2776359362 @default.
- W2598492571 hasConcept C2776401178 @default.
- W2598492571 hasConcept C33923547 @default.
- W2598492571 hasConcept C41008148 @default.
- W2598492571 hasConcept C41895202 @default.
- W2598492571 hasConcept C42011625 @default.
- W2598492571 hasConcept C44859942 @default.
- W2598492571 hasConcept C55493867 @default.
- W2598492571 hasConcept C58166 @default.
- W2598492571 hasConcept C63479239 @default.
- W2598492571 hasConcept C73555534 @default.
- W2598492571 hasConcept C94625758 @default.
- W2598492571 hasConceptScore W2598492571C104047586 @default.
- W2598492571 hasConceptScore W2598492571C104317684 @default.
- W2598492571 hasConceptScore W2598492571C124066611 @default.