Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598508780> ?p ?o ?g. }
- W2598508780 endingPage "338" @default.
- W2598508780 startingPage "328" @default.
- W2598508780 abstract "The aim of this study is to investigate glycerol steam reforming in a heat exchange integrated microchannel reactor involving solid wall separated, rectangular-shaped, parallel reaction and heating channels by means of mathematical modeling techniques. Heat needed for endothermic glycerol steam reforming taking place in Co-Ni/Al2O3 coated channels is supplied by steam flowing in the adjacent channels separated by solid walls. Simultaneous catalytic reaction and heat exchange within the microchannel reactor are modeled by 2D Navier-Stokes equations which were solved by the finite volume method in ANSYS 16.0 platform to study the effects of operational parameters, namely molar inlet steam-to-carbon ratio (S/C) and temperature of the reactive mixture, inlet temperature and velocity of steam, flow configurations of the reactive mixture and steam, and of structural parameters, i.e. reactor wall material and thickness of the wall between the reaction and heating channels on temperature distribution and on glycerol conversion. The results show that increasing S/C from 1 to 6 promotes H2 and CO2 selectivity, having average values of 64.7% and 21.2%, respectively. The same effect, however, suppresses CO selectivity from 12.8% to 10.8% and resulted in CH4 selectivity below 2.7%. Product distribution is found to be in alignment with those of experimental studies reported in the literature. Heating by steam has an obvious contribution to glycerol conversion, which is found to be 73.3% and 63.8% in the presence and absence of steam heating, respectively. Counter- and co-current flow of steam with respect to reactive mixture, however, do not lead to a notable difference in conversion. Increasing steam inlet temperature from 663 K to 783 K improved conversion by 10.0%, whereas changing steam inlet velocity from 2 to 8 m/s did not change reforming channel temperature significantly. Reactor performance is significantly affected by increasing feed temperature of the reactive mixture from 673 K to 773 K which improved conversion by 11.7%. Higher glycerol conversions are also obtained by using thicker separating walls and thermally conductive wall materials, both of which favor heat flux into the reforming channel. Changing the wall thickness from 4 × 10−4 m to 1.2 × 10−3 m elevates conversion by 1.3%. A similar response is noted upon using silicon carbide instead of AISI steel as the material of construction of the microchannel reactor. In general, selectivity towards H2 is positively correlated with the degree of uniformity of reaction channel temperature, which is also found to dampen undesired CH4 selectivity." @default.
- W2598508780 created "2017-04-07" @default.
- W2598508780 creator A5029275631 @default.
- W2598508780 creator A5086221860 @default.
- W2598508780 date "2018-01-01" @default.
- W2598508780 modified "2023-10-05" @default.
- W2598508780 title "Modeling of intensified glycerol steam reforming in a heat-exchange integrated microchannel reactor" @default.
- W2598508780 cites W1545538348 @default.
- W2598508780 cites W1975293890 @default.
- W2598508780 cites W1990731425 @default.
- W2598508780 cites W1996244904 @default.
- W2598508780 cites W1998493170 @default.
- W2598508780 cites W2007402413 @default.
- W2598508780 cites W2011227375 @default.
- W2598508780 cites W2014151081 @default.
- W2598508780 cites W2016312149 @default.
- W2598508780 cites W2019462979 @default.
- W2598508780 cites W2021543899 @default.
- W2598508780 cites W2023431515 @default.
- W2598508780 cites W2027853241 @default.
- W2598508780 cites W2038323760 @default.
- W2598508780 cites W2040737967 @default.
- W2598508780 cites W2045556270 @default.
- W2598508780 cites W2052481966 @default.
- W2598508780 cites W2054528108 @default.
- W2598508780 cites W2063899318 @default.
- W2598508780 cites W2070559431 @default.
- W2598508780 cites W2075886908 @default.
- W2598508780 cites W2078311137 @default.
- W2598508780 cites W2078788713 @default.
- W2598508780 cites W2084342318 @default.
- W2598508780 cites W2095442027 @default.
- W2598508780 cites W2116747762 @default.
- W2598508780 cites W2133591644 @default.
- W2598508780 cites W2159959568 @default.
- W2598508780 cites W2206909341 @default.
- W2598508780 cites W2274258929 @default.
- W2598508780 cites W2313432663 @default.
- W2598508780 cites W2345164188 @default.
- W2598508780 cites W2412754792 @default.
- W2598508780 cites W2523451238 @default.
- W2598508780 cites W748500645 @default.
- W2598508780 cites W2037887891 @default.
- W2598508780 doi "https://doi.org/10.1016/j.cattod.2017.03.029" @default.
- W2598508780 hasPublicationYear "2018" @default.
- W2598508780 type Work @default.
- W2598508780 sameAs 2598508780 @default.
- W2598508780 citedByCount "20" @default.
- W2598508780 countsByYear W25985087802018 @default.
- W2598508780 countsByYear W25985087802019 @default.
- W2598508780 countsByYear W25985087802020 @default.
- W2598508780 countsByYear W25985087802021 @default.
- W2598508780 countsByYear W25985087802022 @default.
- W2598508780 countsByYear W25985087802023 @default.
- W2598508780 crossrefType "journal-article" @default.
- W2598508780 hasAuthorship W2598508780A5029275631 @default.
- W2598508780 hasAuthorship W2598508780A5086221860 @default.
- W2598508780 hasConcept C107706546 @default.
- W2598508780 hasConcept C118792377 @default.
- W2598508780 hasConcept C121332964 @default.
- W2598508780 hasConcept C127413603 @default.
- W2598508780 hasConcept C147831808 @default.
- W2598508780 hasConcept C14794904 @default.
- W2598508780 hasConcept C150394285 @default.
- W2598508780 hasConcept C161790260 @default.
- W2598508780 hasConcept C171250308 @default.
- W2598508780 hasConcept C178790620 @default.
- W2598508780 hasConcept C185592680 @default.
- W2598508780 hasConcept C192562407 @default.
- W2598508780 hasConcept C192811776 @default.
- W2598508780 hasConcept C193015443 @default.
- W2598508780 hasConcept C202189072 @default.
- W2598508780 hasConcept C20976626 @default.
- W2598508780 hasConcept C2780013297 @default.
- W2598508780 hasConcept C37810040 @default.
- W2598508780 hasConcept C42360764 @default.
- W2598508780 hasConcept C43535742 @default.
- W2598508780 hasConcept C63662833 @default.
- W2598508780 hasConcept C97355855 @default.
- W2598508780 hasConceptScore W2598508780C107706546 @default.
- W2598508780 hasConceptScore W2598508780C118792377 @default.
- W2598508780 hasConceptScore W2598508780C121332964 @default.
- W2598508780 hasConceptScore W2598508780C127413603 @default.
- W2598508780 hasConceptScore W2598508780C147831808 @default.
- W2598508780 hasConceptScore W2598508780C14794904 @default.
- W2598508780 hasConceptScore W2598508780C150394285 @default.
- W2598508780 hasConceptScore W2598508780C161790260 @default.
- W2598508780 hasConceptScore W2598508780C171250308 @default.
- W2598508780 hasConceptScore W2598508780C178790620 @default.
- W2598508780 hasConceptScore W2598508780C185592680 @default.
- W2598508780 hasConceptScore W2598508780C192562407 @default.
- W2598508780 hasConceptScore W2598508780C192811776 @default.
- W2598508780 hasConceptScore W2598508780C193015443 @default.
- W2598508780 hasConceptScore W2598508780C202189072 @default.
- W2598508780 hasConceptScore W2598508780C20976626 @default.
- W2598508780 hasConceptScore W2598508780C2780013297 @default.
- W2598508780 hasConceptScore W2598508780C37810040 @default.
- W2598508780 hasConceptScore W2598508780C42360764 @default.