Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598549678> ?p ?o ?g. }
- W2598549678 abstract "Breast cancer is the most common form of cancer among women globally. Detecting a tumor at its early stages is very crucial for a higher possibility of successful treatment. Cancerous cells have high metabolic rate which generate more heat compared to healthy tissue and will be transferred to the skin surface. Thermography technique has distinguished itself as an adjunctive imaging modality to the current gold standard mammography approach due to its capability in measuring the heat radiated from the skin surface for early detection of breast cancer. It provides an additional set of functional information, describing the physiological changes of the underlying thermal and vascular properties of the tissues. However, the thermography technique is shown to be highly dependent on the trained analyst for image interpretation and most of the analyses were conducted qualitatively. Therefore, the current ability of this technique is still limited especially for massive screening activity. This chapter presented a proposed technical framework for automatic segmentation and classification of abnormality on multiple in vivo thermography-based images. A new two-tier automatic segmentation algorithm was developed using a series of thermography screening conducted on both pathological and healthy Sprague-Dawley rats. Features extracted show that the mean values for temperature standard deviation and pixel intensity of the abnormal thermal images are distinctively higher when compared to normal thermal images. For classification, Artificial Neural Network system was developed and produced a validation accuracy performance of 92.5% for thermal image abnormality detection. In conclusion, this study has successfully demonstrated that for massive or routine screening activities, the proposed technical framework could provide a highly reliable clinical decision support to the clinicians in making a diagnosis based on the medical thermal images." @default.
- W2598549678 created "2017-04-07" @default.
- W2598549678 creator A5026460638 @default.
- W2598549678 creator A5032563086 @default.
- W2598549678 creator A5035088704 @default.
- W2598549678 date "2017-01-01" @default.
- W2598549678 modified "2023-09-27" @default.
- W2598549678 title "In Vivo Thermography-Based Image for Early Detection of Breast Cancer Using Two-Tier Segmentation Algorithm and Artificial Neural Network" @default.
- W2598549678 cites W1497132007 @default.
- W2598549678 cites W1966168633 @default.
- W2598549678 cites W1971133223 @default.
- W2598549678 cites W1977449438 @default.
- W2598549678 cites W1987869189 @default.
- W2598549678 cites W1988390438 @default.
- W2598549678 cites W2011844065 @default.
- W2598549678 cites W2023718290 @default.
- W2598549678 cites W2034854359 @default.
- W2598549678 cites W2037354558 @default.
- W2598549678 cites W2044999320 @default.
- W2598549678 cites W2065210076 @default.
- W2598549678 cites W2083613630 @default.
- W2598549678 cites W2088068511 @default.
- W2598549678 cites W2097802970 @default.
- W2598549678 cites W2114168823 @default.
- W2598549678 cites W2114636575 @default.
- W2598549678 cites W2114689211 @default.
- W2598549678 cites W2122256126 @default.
- W2598549678 cites W2134564320 @default.
- W2598549678 cites W2135733203 @default.
- W2598549678 cites W2153574542 @default.
- W2598549678 cites W2155431356 @default.
- W2598549678 cites W2155715818 @default.
- W2598549678 cites W2158445137 @default.
- W2598549678 cites W2158646588 @default.
- W2598549678 cites W2165269742 @default.
- W2598549678 cites W2166097216 @default.
- W2598549678 cites W2167923429 @default.
- W2598549678 cites W2543427932 @default.
- W2598549678 doi "https://doi.org/10.1007/978-981-10-3147-2_8" @default.
- W2598549678 hasPublicationYear "2017" @default.
- W2598549678 type Work @default.
- W2598549678 sameAs 2598549678 @default.
- W2598549678 citedByCount "1" @default.
- W2598549678 countsByYear W25985496782021 @default.
- W2598549678 crossrefType "book-chapter" @default.
- W2598549678 hasAuthorship W2598549678A5026460638 @default.
- W2598549678 hasAuthorship W2598549678A5032563086 @default.
- W2598549678 hasAuthorship W2598549678A5035088704 @default.
- W2598549678 hasConcept C118552586 @default.
- W2598549678 hasConcept C120665830 @default.
- W2598549678 hasConcept C121332964 @default.
- W2598549678 hasConcept C121608353 @default.
- W2598549678 hasConcept C124504099 @default.
- W2598549678 hasConcept C126322002 @default.
- W2598549678 hasConcept C153180895 @default.
- W2598549678 hasConcept C154945302 @default.
- W2598549678 hasConcept C158355884 @default.
- W2598549678 hasConcept C2779222261 @default.
- W2598549678 hasConcept C2780226545 @default.
- W2598549678 hasConcept C2780472235 @default.
- W2598549678 hasConcept C41008148 @default.
- W2598549678 hasConcept C50644808 @default.
- W2598549678 hasConcept C50965678 @default.
- W2598549678 hasConcept C530470458 @default.
- W2598549678 hasConcept C71924100 @default.
- W2598549678 hasConcept C89600930 @default.
- W2598549678 hasConceptScore W2598549678C118552586 @default.
- W2598549678 hasConceptScore W2598549678C120665830 @default.
- W2598549678 hasConceptScore W2598549678C121332964 @default.
- W2598549678 hasConceptScore W2598549678C121608353 @default.
- W2598549678 hasConceptScore W2598549678C124504099 @default.
- W2598549678 hasConceptScore W2598549678C126322002 @default.
- W2598549678 hasConceptScore W2598549678C153180895 @default.
- W2598549678 hasConceptScore W2598549678C154945302 @default.
- W2598549678 hasConceptScore W2598549678C158355884 @default.
- W2598549678 hasConceptScore W2598549678C2779222261 @default.
- W2598549678 hasConceptScore W2598549678C2780226545 @default.
- W2598549678 hasConceptScore W2598549678C2780472235 @default.
- W2598549678 hasConceptScore W2598549678C41008148 @default.
- W2598549678 hasConceptScore W2598549678C50644808 @default.
- W2598549678 hasConceptScore W2598549678C50965678 @default.
- W2598549678 hasConceptScore W2598549678C530470458 @default.
- W2598549678 hasConceptScore W2598549678C71924100 @default.
- W2598549678 hasConceptScore W2598549678C89600930 @default.
- W2598549678 hasLocation W25985496781 @default.
- W2598549678 hasOpenAccess W2598549678 @default.
- W2598549678 hasPrimaryLocation W25985496781 @default.
- W2598549678 hasRelatedWork W1887808725 @default.
- W2598549678 hasRelatedWork W1967551258 @default.
- W2598549678 hasRelatedWork W2051089968 @default.
- W2598549678 hasRelatedWork W2052098616 @default.
- W2598549678 hasRelatedWork W2098990330 @default.
- W2598549678 hasRelatedWork W2187948146 @default.
- W2598549678 hasRelatedWork W2240036547 @default.
- W2598549678 hasRelatedWork W2611030067 @default.
- W2598549678 hasRelatedWork W2810914127 @default.
- W2598549678 hasRelatedWork W2909117339 @default.
- W2598549678 hasRelatedWork W2942590749 @default.
- W2598549678 hasRelatedWork W2953647698 @default.
- W2598549678 hasRelatedWork W3032946611 @default.