Matches in SemOpenAlex for { <https://semopenalex.org/work/W2598556338> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2598556338 startingPage "18" @default.
- W2598556338 abstract "INTRODUCTION Propelled by the growth in commercial usage of the internet by companies and customers, Big Data has emerged as a scientific and marketing discipline which gathers, analyzes, and extracts informational value from massive amounts of business and customer online interactions. The growth of publicly available unstructured data is immense and pervasive --and it is growing at an accelerated pace according to Jonathan Shaw (2014). Shaw makes the case for Big Data: Data now stream from daily life: from phones and credit cards and televisions and computers; from the infrastructure of cities; from sensor-equipped buildings, trains, buses, planes, bridges, and factories. The data flow so fast that the total accumulation of the past two years--a zettabyte--dwarfs the prior record of human civilization (Shaw, 2014, p. 30). Many companies and institutions have quickly recognized the value of harnessing Big Data. Allouche (2014) suggests that applying the science and discipline of Big Data to the massive amounts of unstructured marketing data can leverage that data to innovate their advertising programs. He also suggests that it is important to help companies advertise to customers for the things they want and use--without being annoying. Forbes Magazine (Whitler, 2015) supports the virtues of Big Data and the analysis of that data using Advertising Analytics. Advertising Analytics, a term popularized in the academic literature by Nichols (2013), refers to the set of capabilities that allows marketing firms to make sense of Big Data, ultimately enabling the measurement of an advertising campaign's impact on their business. Jobs, Aukers, and Gilfoil (2015) studied this emerging Big Data/Advertising Analytics discipline and developed a consolidated framework and typology of the firms operating in the ecosystem. It is evident from this work that, even though the ecosystem is thriving and rapidly evolving, the discipline is complex and sometimes difficult to understand. While there are some clear lines of distinction in the types of Big Data and Advertising Analytic firms in the ecosystem, there are some blurry lines, overlap, and interdependence between the constituent firms. Furthermore, some marketing clients are still not convinced about the overall value of Big Data (Ross, Beath, & Quaadgras, 2013), while others are questioning the affordability of Big Data and Advertising Analytic firms, the steepness of their learning curves, how to use them to drive their marketing strategies, or how they can be used to improve marketing efficiency and effectiveness (Purohit, 2014; IBM, 2013; Duke CMO Survey, 2013; Moorman, 2013). Purohit (2014), in particular, suggests that there is a strong enough incentive to overcome the barriers to using Big Data, provided that companies understand the power of this data and analytics to deliver higher throughput, better value for customers, and the immaculate growth in the global economy. While the potential power of Big Data and Marketing Analytics can readily be detailed, a key challenge lies is integrating Big Data into a client company's overall strategy. It requires a significant commitment of resources in terms of money, staff, and time--and the organization needs a plan on how to execute. A recent McKinsey report (Biesdorf, Court, & Willmott, 2013) underscores this point while noting that CIO's must also stress the need to completely remake company data architectures and applications. The report concludes that the missing step for most companies is spending the time to understand how data, analytics, frontline tools, and people can come together to create business value. The problem being addressed in this research endeavor is that the Big Data and Advertising Analytics ecosystem is complex and still evolving. While there is much hype about the industry and its promises to enhance marketing (advertising) program efficiencies and effectiveness, many potential marketing clients (i. …" @default.
- W2598556338 created "2017-04-07" @default.
- W2598556338 creator A5015271526 @default.
- W2598556338 creator A5028243866 @default.
- W2598556338 creator A5074631849 @default.
- W2598556338 date "2016-01-01" @default.
- W2598556338 modified "2023-09-24" @default.
- W2598556338 title "How Marketing Organizations Can Benefit from Big Data Advertising Analytics" @default.
- W2598556338 hasPublicationYear "2016" @default.
- W2598556338 type Work @default.
- W2598556338 sameAs 2598556338 @default.
- W2598556338 citedByCount "3" @default.
- W2598556338 countsByYear W25985563382018 @default.
- W2598556338 countsByYear W25985563382019 @default.
- W2598556338 countsByYear W25985563382020 @default.
- W2598556338 crossrefType "journal-article" @default.
- W2598556338 hasAuthorship W2598556338A5015271526 @default.
- W2598556338 hasAuthorship W2598556338A5028243866 @default.
- W2598556338 hasAuthorship W2598556338A5074631849 @default.
- W2598556338 hasConcept C110875604 @default.
- W2598556338 hasConcept C111919701 @default.
- W2598556338 hasConcept C112698675 @default.
- W2598556338 hasConcept C119857082 @default.
- W2598556338 hasConcept C13280743 @default.
- W2598556338 hasConcept C136764020 @default.
- W2598556338 hasConcept C144133560 @default.
- W2598556338 hasConcept C153083717 @default.
- W2598556338 hasConcept C162853370 @default.
- W2598556338 hasConcept C205649164 @default.
- W2598556338 hasConcept C2522767166 @default.
- W2598556338 hasConcept C2776915394 @default.
- W2598556338 hasConcept C2777526511 @default.
- W2598556338 hasConcept C2781252014 @default.
- W2598556338 hasConcept C41008148 @default.
- W2598556338 hasConcept C512338625 @default.
- W2598556338 hasConcept C518677369 @default.
- W2598556338 hasConcept C75684735 @default.
- W2598556338 hasConcept C79158427 @default.
- W2598556338 hasConceptScore W2598556338C110875604 @default.
- W2598556338 hasConceptScore W2598556338C111919701 @default.
- W2598556338 hasConceptScore W2598556338C112698675 @default.
- W2598556338 hasConceptScore W2598556338C119857082 @default.
- W2598556338 hasConceptScore W2598556338C13280743 @default.
- W2598556338 hasConceptScore W2598556338C136764020 @default.
- W2598556338 hasConceptScore W2598556338C144133560 @default.
- W2598556338 hasConceptScore W2598556338C153083717 @default.
- W2598556338 hasConceptScore W2598556338C162853370 @default.
- W2598556338 hasConceptScore W2598556338C205649164 @default.
- W2598556338 hasConceptScore W2598556338C2522767166 @default.
- W2598556338 hasConceptScore W2598556338C2776915394 @default.
- W2598556338 hasConceptScore W2598556338C2777526511 @default.
- W2598556338 hasConceptScore W2598556338C2781252014 @default.
- W2598556338 hasConceptScore W2598556338C41008148 @default.
- W2598556338 hasConceptScore W2598556338C512338625 @default.
- W2598556338 hasConceptScore W2598556338C518677369 @default.
- W2598556338 hasConceptScore W2598556338C75684735 @default.
- W2598556338 hasConceptScore W2598556338C79158427 @default.
- W2598556338 hasIssue "1" @default.
- W2598556338 hasLocation W25985563381 @default.
- W2598556338 hasOpenAccess W2598556338 @default.
- W2598556338 hasPrimaryLocation W25985563381 @default.
- W2598556338 hasRelatedWork W116775325 @default.
- W2598556338 hasRelatedWork W1480059159 @default.
- W2598556338 hasRelatedWork W1531213509 @default.
- W2598556338 hasRelatedWork W1602168222 @default.
- W2598556338 hasRelatedWork W2356391973 @default.
- W2598556338 hasRelatedWork W2411193697 @default.
- W2598556338 hasRelatedWork W2476319195 @default.
- W2598556338 hasRelatedWork W2512261568 @default.
- W2598556338 hasRelatedWork W2565491996 @default.
- W2598556338 hasRelatedWork W2578439033 @default.
- W2598556338 hasRelatedWork W2617679422 @default.
- W2598556338 hasRelatedWork W2752621389 @default.
- W2598556338 hasRelatedWork W2892306304 @default.
- W2598556338 hasRelatedWork W2896631911 @default.
- W2598556338 hasRelatedWork W2943954835 @default.
- W2598556338 hasRelatedWork W2966658087 @default.
- W2598556338 hasRelatedWork W3142121367 @default.
- W2598556338 hasRelatedWork W3196971733 @default.
- W2598556338 hasRelatedWork W406039924 @default.
- W2598556338 hasRelatedWork W610386981 @default.
- W2598556338 hasVolume "20" @default.
- W2598556338 isParatext "false" @default.
- W2598556338 isRetracted "false" @default.
- W2598556338 magId "2598556338" @default.
- W2598556338 workType "article" @default.